Energy-based models: a recap

- Alternative to likelihood-based models $\bigcup_{\text{push down}}$ $p_{\theta}(\mathbf{x}) =$ $\exp(-f_{\theta}(\mathbf{x}))$ *Zθ* $Z_{\theta} = \int \exp(-f_{\theta}(\mathbf{x}))dx$
- We cannot ignore during training Z_{θ} as it also depends on parameters *Zθ*
-

[Stefano Ermon and Aditya Grover](https://deepgenerativemodels.github.io/assets/slides/cs236_lecture11.pdf)

• For general functions & architectures f_{θ} intractable to maximise wrt likelihood due to Z_{θ}

Score-based models: impressive results

- Energy-based models with GAN-like quality in generation, while having the advantages of explicit probabilistic models
- Explicit likelihood computation
- Representation learning
- State-of-the-art results in generation, audio synthesis, shape generation, etc

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021 (outstanding paper award)

Score function

• The (Stein) score function is the gradient of the log-probability of a distribution w.r.t. to the input

$\nabla_{\mathbf{x}}$ log $p(\mathbf{x})$

• A model $s_{\theta}(x)$, which models the score function explicitly, is a score-based model *sθ*(*x*)

 $s_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$

The score function of a mixture of two Gaussians

Score-based generative models

- The score function does not depend on the normalising constant *Zθ* $s_{\theta}(\mathbf{x}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) = -\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}) - \nabla_{\mathbf{x}} \log Z_{\theta} = -\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})$ $=0$
- Thus we do not care if Z_θ is tractable or not *Zθ*
-
-

Y. Song, S. Ermon, Generative Modeling by Estimating Gradients of the Data Distribution. NeurIPS 2019

• What to optimise since score-based model outputs a vector representing gradients?

• E.g., to minimise the Fisher divergence \leftarrow optimal gradient/ground truth data score $p(x)$ || ∇ **x** | $\log p(x) - s_{\theta}(x)$ ||2

Score-matching

• It can be shown^{*} that optimising $\mathbb{E}_{p(\mathbf{x})} || \nabla_{\mathbf{x}} log p(\mathbf{x}) - s_{\theta}(\mathbf{x}) ||_2^2$ is equivalent to $E_{\textit{Pdata}}(\mathbf{x})$ tr $(\nabla_{\mathbf{x}}s)$

up to some regularity conditions

- No dependence on ground truth score gradients
- Still, the trace of the Jacobian is too expensive for large networks and approximations are needed

$$
\|\nabla_{\mathbf{x}} \log p(\mathbf{x}) - s_{\theta}(\mathbf{x})\|_{2}^{2}
$$
 is equivalent to

$$
s_{\theta}(\mathbf{x}) + \frac{1}{2} \|s_{\theta}(\mathbf{x})\|_{2}^{2}
$$

* Estimation of Non-Normalized Statistical Models by Score Matching, Hyvarinen, 2005 Song et al., Sliced score matching: A scalable approach to density and score estimation, UAI 2019

Denoising score-matching

• Denoising score matching works well for small level of noise 1 $\frac{1}{2} \mathbb{E}_{q_{\sigma}(\tilde{\mathbf{X}}|\mathbf{X})} p_{data}(\mathbf{x}) \left[\left\| \mathbf{S}_{\theta}(\tilde{\mathbf{X}}) - \nabla_{\tilde{\mathbf{X}}} \log q_{\sigma}(\tilde{\mathbf{X}}|\mathbf{X}) \right\| \right]$ 2 2]

where the data x is corrupted to \tilde{x} as

- First sample a training example from the training set
- Then add noise to it from a pre-specified distribution
- You can repeat the process and average with Monte Carlo simulation (or do it once)

x is corrupted to $\tilde{\mathbf{x}}$ as $q_{\sigma}(\tilde{\mathbf{x}}) = \int q_{\sigma}(\tilde{\mathbf{x}} | \mathbf{x}) p_{data}(\mathbf{x}) d\mathbf{x}$

^{*} Vincent, A connection between score matching and denoising auto encoders, Neural Computation, 2011

• Sliced score-matching, which uses random projections to approximate the trace $p(\mathbf{v})$ \mathbf{F}_{data} $\mathbf{v}^{\mathsf{T}}\nabla_{\mathbf{x}}s_{\theta}(\mathbf{x})\mathbf{v} +$ 1 2 $\left\| \mathcal{S}_{\theta} \right\|_2^2$

Sliced score-matching

- First sample a few vectors v that define the random projections
- Then compute $\mathbf{v}^\top \nabla_{\mathbf{x}} s_{\theta}(\mathbf{x}) \mathbf{v}$ using forward-mode auto-differentiation
- Works on the original, unperturbed data distribution
- But it requires 4x the compute due to the extra auto-differentiation

where $p(\mathbf{v})$ is a simple distribution of random vectors like multivariate Gaussian

- * Song et al., Sliced score matching: A scalable approach to density and score estimation, UAI 2019
- E. Gavves **Score-matching & Diffusion Generative Models** <http://uvadl2c.github.io>

Score-matching: advantages

- We can train with score-matching directly with SGD like maximising log-likelihood
- We have no constraints on the form of $f_{\theta}(x)$ as we do not require $s_{\theta}(x)$ to be the score function of a normalised distribution
- We just compare our neural network output with the ground-truth data score
- The only requirement is that $s_{\theta}(x)$ is a vector valued function with the same input and output dimensionality *sθ*(*x*)

Sampling using Langevin dynamics

- During training we do not involve an explicit "sampling" mechanism
- After training the score-based model, we can sample with Langevin dynamics
- Langevin dynamics are an MCMC procedure to sample from distribution $p(x)$ using only the score function $\nabla_x \log p(x)$

$$
\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t + \epsilon \nabla_{\mathbf{x}} \log p(\mathbf{x}_t) + \sqrt{2\epsilon} \mathbf{z}_t, \ t = 0, ..., K, \ \mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

• At $t = 0$ we sample from an arbitrary prior distribution $t = 0$ we sample from an arbitrary prior distribution $\mathbf{x}_0 \sim \pi(\mathbf{x})$

Sampling using Langevin dynamics

$$
\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t + \epsilon \nabla_{\mathbf{x}} \log p(\mathbf{x}_t) + \sqrt{2\epsilon} \mathbf{z}_t, t =
$$

- For $\epsilon \to 0$ and $K \to \infty$ we sample from $p(\mathbf{x})$
- Iterative sampling process relying only on score function
- Sample \mathbf{x}_{t+1} iteratively via **x**_{*t*+1} iteratively via $s_{\theta}(x) \approx \nabla_x \log p(x)$

 $0, \ldots, K$

Langevin Dynamics

$\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t + \epsilon \nabla_{\mathbf{x}} \log p(\mathbf{x}_t) + \sqrt{2\epsilon \mathbf{z}_t}, \ t = 0, \ldots, K, \ \mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

- Originally developed to model molecular dynamics
- Similar to noised-up SGD, but not for optimising parameters
- Given current \mathbf{x}_t move towards more likely densities $(\nabla_{\mathbf{x}})$ of $\log p(\mathbf{x}_t)$, yet corrupted with noise \mathbf{z}_t for randomness, and scaled by annealed ϵ (like 'learning rate') **x**_t move towards more likely densities ($\nabla_{\mathbf{x}}$) of $\log p(\mathbf{x}_t)$
- A very nice work making the connection to Bayesian Learning*

['Bayesian Learning via Stochastic Gradient Langevin Dynamics'](https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf), M. Welling, Y. W. Teh

E. Gavves Score-matching & Diffusion Generative Models <http://uvadl2c.github.io>

Low data density regions

- $p(\mathbf{x})$ [$\|\nabla_{\mathbf{x}}\log p(\mathbf{x}) s_{\theta}(\mathbf{x})\|_{2}^{2}$] = $\int p(\mathbf{x})\|\nabla_{\mathbf{x}}\log p(\mathbf{x}) s_{\theta}(\mathbf{x})\|_{2}^{2}$
- In high-dimensions harder as space is mostly empty
- Monte Carlo estimates will not be accurate enough

Slow mixing of Langevin dynamics

$\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t + \epsilon \nabla_{\mathbf{x}} \log p(\mathbf{x}_t) + \sqrt{2\epsilon \mathbf{z}_t}$

- region, it is hard for Langevin dynamics to visit them in a reasonable time
- That makes sense: the 'jumps' local around current location of score function and the added noise is unlikely to be large enough to push far enough

Figure 3: Samples from a mixture of Gaussian with different methods. (a) Exact sampling. (b) E. Gavves Sampling using Langevin dynamics with the exact scores. (c) Sampling using annealed Langevin
dynamics with the exact scores. Clearly Langevin dynamics estimate the relative weights between
the two modes incorrect

$$
\mathbf{z}_t, \ t = 0, \ldots, K, \ \mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

• When the true density has two (or multiple) modes separated by a low-density

From 'Generative Modelling by Estimating Gradients of the Data Distribution', by Song and Ermon

- Naive score-based training leads to inaccurate score function estimation
- And we have slow mixing of Langevin dynamics
- As a result, the Langevin chain will start from a low density region and get stuck

E. Gavves **Score-matching & Diffusion Generative Models** <http://uvadl2c.github.io>

Naive score-based ignores low-density regions

Solution: Perturb with noise (and denoise)

- For noised-up score matching perturb data with noise $q_{\sigma_t}(\mathbf{x})$ $\tilde{\zeta}$
- Noised up data fill up the "empty" space
-

$\mathbf{p} = \int p(\mathbf{x})q(\mathbf{\tilde{x}} | \mathbf{x}) d\mathbf{x} = \int p(\mathbf{x}) \mathcal{N}(\mathbf{\tilde{x}})$ $\tilde{\textbf{x}}\,|\,\textbf{x},\sigma_t^2$ $\int_t^2 I \, dx$

• Be careful: if too much noise data will be over-corrupted (strong distribution shift)

Perturbed scores

• Learn the score-matching function on the perturbed data points

Noise-conditional Score-based Models

Multiple scales of Gaussian noise to perturb data (above) so that to learn the respective score-matching function (below).

Noise-Conditional Score-based Models

- For a single noise scale and denoising a Gaussian noise auxiliary noise $(\tilde{\mathbf{x}}; \mathbf{x}, \sigma^2)$
- The loss becomes

$$
\frac{1}{2}\mathbb{E}_{p_{data}(\mathbf{x})}\mathbb{E}_{\tilde{\mathbf{x}}\mathcal{N}(\mathbf{x},\sigma^2\mathbf{I})}\left[\left\|\mathbf{s}_{\theta}(\tilde{\mathbf{x}},\sigma)+\frac{\tilde{\mathbf{x}}-\mathbf{x}}{\sigma^2}\right\|_{2}^{2}\right]
$$

• And for multiple scales

$$
\sum_{t} \lambda(t) \mathbb{E}_{p_{\sigma_t}(\mathbf{x})} \left[\|\nabla_{\mathbf{x}} \log p_{\sigma_t}(\mathbf{x}) - s_{\theta}(\mathbf{x}, t) \right] \| \right]
$$

where $\lambda(t)$ is a weighting function, typical choice $\lambda(t) = \sigma_t^2$

I) $\Rightarrow \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} | \mathbf{x}) = -(\tilde{\mathbf{x}} - \mathbf{x})/\sigma^2$

choice
$$
\lambda(t) = \sigma_t^2
$$

Annealed Langevin Dynamics

• Like before, but we start sampling from larger noise, which we gradually decrease

Algorithm 1 Annealed Langevin dynamics.

Require: $\{\sigma_i\}_{i=1}^L, \epsilon, T$. 1: Initialize $\tilde{\mathbf{x}}_0$ 2: for $i \leftarrow 1$ to L do 3: $\alpha_i \leftarrow \epsilon \cdot \sigma_i^2 / \sigma_L^2$ $\triangleright \alpha_i$ is the step size. for $t \leftarrow 1$ to T do $4:$ 5: Draw $\mathbf{z}_t \sim \mathcal{N}(0, I)$ $\tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \mathbf{z}_t$ 6: $7:$ end for 8: $\tilde{\mathbf{x}}_0 \leftarrow \tilde{\mathbf{x}}_T$ $9:$ end for return $\tilde{\mathbf{x}}_T$

Practical tips

- \bullet Pick σ_t in geometric progression *σ*1 *σ*2 =
- σ _L should be comparable to max distance between samples in the training set *σL*
- L is usually a few hundreds or thousands
- Parameterise the score-based model with a U-Net with skip connections
- At test time use exponential moving averages on the weights

 σ ₂ *σ*3 =