

Overview

Overview of the subjects for the multi-GPU part

Theory

Š

- Why GPU?
- Why multiple GPUS?
- Backends NCCL, GLOO
- GPU operations scatter, gather, all reduce etc.

Practice

- Data parallel
- Distributed data parallel
- What more can we do?

Practice ++

- Pytorch Lightning
- Tracking performance

Ŵ

Why GPU?

- Neural networks are *embarrassingly parallel*
- The computations (mostly matrix multiplications) can be executed in parallel and are independent
- GPUs excel exactly at such parallel computations due to their architecture

Why multiple GPU?

- Example: OpenAI's CLIP
- Large model trained on combination of images and text
- Dataset of 400 million (image, text) pairs

1. Contrastive pre-training

CLIP learns image and text combinations, to later predict captions for images. Source: OpenAI

Why multiple GPU?

- Example: OpenAI's CLIP
- If we were to train this setup on a single 'household' GPU
- Training time: ~ 30 years..
- Instead, it was trained on 592 GPUs in 18 days

1. Contrastive pre-training

CLIP learns image and text combinations, to later predict captions for images. Source: OpenAI

UNIVERSITY OF AMSTERDAM

Why multiple GPU?

- Example: *large generative models*
- In this example we generated *lung nodules* on healthy lung images
- These generative models are large and need loads of data

Generative models can be used to expand datasets by generating 'fake' examples of lung nodules. Source: NKI Š

Why multiple GPU?

- Example: *large language models*
- Models can be too large to fit in the GPU memory

Model Name	$n_{\rm params}$	$n_{\rm layers}$	$d_{ m model}$	$n_{\rm heads}$	d_{head}	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes 10^{-4}$
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	$2.0 imes 10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	$1.6 imes 10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

Multi-GPU Backends

How do we control and coordinate the multiple GPUs

- Levels of abstraction Lightning Pytorch Backend C++/CUDA ...
- We will consider lightning, torch and the communication backends (NCCL/GLOO)

UNIVERSITY OF AMSTERDAM

Ŵ

Multi-GPU Backends

- Pytorch distributed support three built-in backends
- For multi-GPU: *NCCL* is generally the fastest and most versatile
- When appropriately configured there is near-linear scalability

			· · · r — · · · · - · · · · · · · · · · · · · ·	-0		
Backend	gloo		mpi	-	nccl	
Device	CPU	GPU	CPU	GPU	CPU	GPU
send	\checkmark	X	\checkmark	?	X	\checkmark
recv	\checkmark	×	\checkmark	?	X	\checkmark
broadcast	\checkmark	\checkmark	\checkmark	?	X	\checkmark
all_reduce	\checkmark	\checkmark	\checkmark	?	×	\checkmark
reduce	\checkmark	x	\checkmark	?	x	\checkmark
all_gather	\checkmark	x	\checkmark	?	x	\checkmark
gather	\checkmark	x	\checkmark	?	×	\checkmark
scatter	\checkmark	x	\checkmark	?	x	×
reduce_scatter	x	x	x	x	x	\checkmark
all_to_all	×	x	\checkmark	?	x	\checkmark

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

Ň

Multi-GPU Operations

Basic Dictionary

• Group, world and ranks

Point-to-Point Communication

• Send / Recv

Collective Communication

- Scatter
- Broadcast
- Reduce
- All-Reduce

Multi-GPU Operations

Basic Dictionary

- Node: a system in the compute cluster, e.g., a server with multiple GPUs
- Global/Node Rank: unique identifier for each node
- Local Rank: unique identifier for each process (usually each GPU corresponds to one process) on a single node
- World: a group containing all the processes, which can communicate with each other

• We will see these terms in practice in the tutorial

UNIVERSITY OF AMSTERDAM

Multi-GPU Operations – Point-to-Point

- Any Point-to-Point communication is achieved using Send and Recv
- Can be used for any communication pattern between ranks

Multi-GPU Operations – Point-to-Point

Send / Recv

Š

- Send tensor to another rank
- Receive tensor from another rank
- *Example usage*: when we want very fine-grained control

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

Multi-GPU Operations – Point-to-Point

Send / Recv

• Example research usages

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Deep Speech: Scaling up end-to-end speech recognition

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, Andrew Y. Ng

Baidu Research - Silicon Valley AI Lab

ŝ

Multi-GPU Operations – Collective

- Must be called for each rank
- If this does not happen, we can enter a so-called *deadlock*, in which we are forever waiting for one (or more) of the ranks

Scatter

Š

- Distributes from one rank to all others
- *Example usage*: divide batches among ranks

• Sidenote: scatter is not done using NCCL

Broadcast

- Copy data to all other ranks
- *Example usage*: copy model to all ranks

Reduce

- Perform reductions (e.g., sum, average, max,..) across devices and write to one 'root' device
- *Example usage*: average or sum a metric from all ranks
- The **Gather** operation is a Reduce with a *concatenate* operation

All Reduce

Ŵ

- A *reduce* operation followed by a *broadcast*
- *Example usage*: averaging the gradients in a backpropagation (see distributed data parallel)

Other operations

• In the tutorial we will discuss **AllGather** and **ReduceScatter**

Practice – PyTorch Frameworks

Overview

- Data Parallel
- Distributed Data Parallel
- Can we do more?

Practice – PyTorch Data Parallel

Overview

- 1: Split mini-batch and *scatter* over ranks
- 2: *Broadcast* model over all ranks
- 3: Forward the mini-batches through the model
- 4: *Reduce* the gradients to rank 0
- 5: Perform the backpropagation and obtain updated model
- Repeat

• Sidenote: data parallel allows for only one node – no multinode training

Practice – PyTorch Data Parallel

The GIFs shown in the lectures can be found at:

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba

DataParallel has a lot of communication overhead Source: W. Falcon – PyTorch Lightning

Overview

- Only once: *broadcast* the model and initialize identically on each rank
 - 1: Gather data indices from a *distributed* sampler.
 Example: 2 GPUs and dataset [0,1,2,3], could yield [0,1] for GPU 0 and [2,3] for GPU 1

Overview

- Only once: *broadcast* the model and initialize identically on each rank
 - 1: Gather data indices from a *distributed* sampler
 - 2: Forward through model
 - 3: All Reduce the gradients whilst every rank is performing a backpropagation
 - 4: All ranks perform an optimization step with the synchronized gradients
 - Repeat

• Sidenote: multinode training is supported

The GIFs shown in the lectures can be found at:

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba

DDP avoids the large amounts of communication overhead by synchronizing gradients Source: W. Falcon – PyTorch Lightning

Overview

Ŵ

- Due to the lack of overhead, DDP is generally much faster than DP
- With DDP, each GPU gets its own process
- DDP is scalable across multiple nodes

ŝ

What more can we do?

- FairScale
- Models might be too large
- DDP might not scale as expected

Overview

- Multi-GPU in Lightning
- Tracking performance

Multi-GPU in Lightning

- Lightning makes everything very easy
- Strategy argument determines the distributed backend (DP, DDP, ...)

from pytorch_lightning import Trainer

Two GPUs with the Data Parallel strategy Trainer(gpus=2, strategy='dp')

Two nodes, each with four GPUs using Distributed Data Parallel Trainer(num_nodes=2, gpus=4, strategy='ddp')

Multi-GPU in Lightning

UNIVERSITY OF AMSTERDAM

- There are many finetuning options that we have not discussed
- If you are interested, research them yourself, the documentation of PyTorch and Lightning should be sufficient

from pytorch_lightning import Trainer
Some examples
Two GPUs with the 'spawn-based' DDP
Trainer(gpus=2, strategy='ddp_spawn')

Do not look for unused parameters every iteration Trainer(num_nodes=2, gpus=4, strategy='ddp_find_unused_parameters_false')

Tracking Performance

• GPU performance with *nvtop*

UNIVERSITY OF AMSTERDAM

Š

Practice ++ PyTorch Lightning

Ň

Practice ++ PyTorch Lightning

Tracking Performance

- Not every cluster has *nvtop*, in such cases one can watch *nvidia-smi* as well
- It shows the GPU memory and utilization without any graphs

Š

Practice ++ PyTorch Lightning

Tracking Performance

- Profilers
- A couple are built-in into Lightning
- The most comprehensive one is the PyTorch profiler

from pytorch_lightning import Trainer

Profiling with the pytorch profiler Trainer(profiler='pytorch') Ŵ

Practice ++ PyTorch Lightning

Tracking Performance

- Detailed information on the operations performed
- Check whether the CPU is performing its tasks ahead of the GPU
- Why is the GPU not utilized?

