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Overview

Overview of the subjects for the multi-GPU part

Theory
« Why GPU?
« Why multiple GPUS?
« Backends — NCCL, GLOO
« GPU operations — scatter, gather, all reduce etc.

Practice
 Data parallel
« Distributed data parallel
« What more can we do?

Practice ++
 Pytorch Lightning
 Tracking performance
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Why GPU?

* Neural networks are embarrassingly parallel
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« The computations (mostly matrix multiplications) can be executed in parallel and are independent
« GPUs excel exactly at such parallel computations due to their architecture
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The large amount of cores is ideally suited for independent parallel
computations. Source: NVIDIA
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Why multiple GPU?

« Example: OpenAl'’s CLIP

 Large model trained on combination
of Images and text

 Dataset of 400 million (image, text)
pairs
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1. Contrastive pre-training
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Why multiple GPU?

Example: OpenAl’s CLIP

If we were to train this setup on a
single ‘household” GPU

Training time: ~ 30 years..

Instead, It was trained on 592 GPUSs In
18 days
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1. Contrastive pre-training
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Why multiple GPU?

« Example: large generative models

(b)

* In this example we generated lung
nodules on healthy lung images

» These generative models are large and
need loads of data

(d)

Generative models can be used to expand datasets by

generating ‘fake’ examples of lung nodules.
Source: NKI
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Why multiple GPU?

« Example: large language models
» Models can be too large to fit in the GPU memory

Model Name Nparams  Mayers Omodel  Mheads Ohead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~4
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 1M 2.0 x 10~
GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-36.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 1074

GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~*
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Multi-GPU Backends

How do we control and coordinate the multiple GPUs

« Levels of abstraction Lightning — Pytorch — Backend — C++/CUDA — ...

« We will consider lightning, torch and the communication backends (NCCL/GLOOQ)
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Multi-GPU Backends - x

 Pytorch distributed support three i ’ ‘ ? X ‘

built-in backends deedce y y : X y

* For multi-GPU: NCCL Is s x y : X y

generally the fastest and most o ) ) | ) )
versatile g

* When appropriately configured o : \/ | X \/

there Is near-linear scalability
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Multi-GPU Operations

Basic Dictionary
« Group, world and ranks

Point-to-Point Communication
 Send/ Recv

Collective Communication
e Scatter
» Broadcast
* Reduce
» All-Reduce
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Multi-GPU Operations

Basic Dictionary
« Node: a system in the compute cluster, e.g., a server with multiple GPUs
Global/Node Rank: unique identifier for each node

Local Rank: unique identifier for each process (usually each GPU corresponds to
one process) on a single node

World: a group containing all the processes, which can communicate with each other

We will see these terms in practice in the tutorial
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Multi-GPU Operations — Point-to-Point

 Any Point-to-Point communication is achieved using Send and Recv

 Can be used for any communication pattern between ranks
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Multi-GPU Operations — Point-to-Point

Send / Recv
* Send tensor to another rank
* Receive tensor from another rank Rank 0 Rank 1

send
o Example uSage. when we want very \

fine-grained control
Rank 2 Rank 3

recv
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Multi-GPU Operations — Point-to-Point

Send / Recv
Accurate, Large Minibatch SGD:
« Example research usages Training ImageNet in 1 Hour

Priya Goyal Piotr Dollar Ross Girshick Pieter Noordhuis
Lukasz Wesolowski  Aapo Kyrola  Andrew Tulloch  Yangging Jia Kaiming He

Facebook

Deep Speech: Scaling up end-to-end
speech recognition

Awni Hannun; Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,
Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, Andrew Y. Ng

Baidu Research — Silicon Valley Al Lab
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Multi-GPU Operations — Collective

 Must be called for each rank

« |f this does not happen, we can enter a so-called deadlock, in which we are forever
waiting for one (or more) of the ranks
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Multi-GPU Operations — Collective

Scatter [0,1,2]
* Distributes from one rank to all others Rank 0
« Example usage: divide batches among /J\
ranks
Rank 0 Rank 1 Rank 2
[0] [1] [2]

« Sidenote: scatter is not done using NCCL
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Multi-GPU Operations — Collective

Broadcast
« Copy data to all other ranks
« Example usage: copy model to all ranks

‘rank0 i rank1l { rank 2 | rank 3 i ‘rank0 i rank1 i rank 2 | rank 3 |
5 = . (root) | ; 5 5 5 5 !
in out out out out
out[i] = in[i]

Broadcast copies data from a ‘root’rank to all others
Source: NVIDIA
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Multi-GPU Operations — Collective

Reduce

 Perform reductions (e.g., sum, average, max,..) across devices and write to one

‘root’ device

« Example usage: average or sum a metric from all ranks
« The Gather operation is a Reduce with a concatenate operation

rank0 [ rank1 | rank 2 | rank 3 |

II )

rank0 | rank1 | rank 2 | rank 3 |

. (root) |

out

qut[l] = snl,lmﬁn}([i]]l

Example of a reduce operation with ‘sum’
Source: NVIDIA


https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations — Collective

All Reduce
A reduce operation followed by a broadcast

« Example usage: averaging the gradients in a backpropagation (see distributed data
parallel)

i rank0 | rank1 | rank 2 | rank 3 | rank0 | rank1 | rank 2 | rank 3 |

II in3 | ) | out ||| out || out || out

qutﬁ] = sﬁmﬂﬂx[i])l

Example of an all-reduce operation with ‘sum’
Source: NVIDIA
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Multi-GPU Operations — Collective

Other operations
* In the tutorial we will discuss AllGather and ReduceScatter
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Practice — PyTorch Frameworks

Overview
» Data Parallel
 Distributed Data Parallel
e Can we do more?
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Practice — PyTorch Data Parallel

Overview
 1: Split mini-batch and scatter over ranks
2. Broadcast model over all ranks
3: Forward the mini-batches through the model
4: Reduce the gradients to rank O
5: Perform the backpropagation and obtain updated model
Repeat

 Sidenote: data parallel allows for only one node — no multinode training
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Practice — PyTorch Data Parallel

The GIFs shown In the lectures can be found at:

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba

DataParallel has a lot of communication overhead
Source: W. Falcon — PyTorch Lightning


https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice — PyTorch Distributed Data Parallel

Overview
« Only once: broadcast the model and initialize identically on each rank

 1: Gather data indices from a distributed sampler.
Example: 2 GPUs and dataset [0,1,2,3], could yield [0,1] for GPU 0 and [2,3] for
GPU 1
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Practice — PyTorch Distributed Data Parallel

Overview
« Only once: broadcast the model and initialize identically on each rank

 1: Gather data indices from a distributed sampler
2. Forward through model
3: All Reduce the gradients whilst every rank is performing a backpropagation
4: All ranks perform an optimization step with the synchronized gradients
Repeat

« Sidenote: multinode training Is supported


https://uvadl2c.github.io/
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Practice — PyTorch Distributed Data Parallel

The GIFs shown In the lectures can be found at:

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba

DDP avoids the large amounts of communication
overhead by synchronizing gradients
Source: W. Falcon — PyTorch Lightning
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Practice — PyTorch Distributed Data Parallel

Overview
* Due to the lack of overhead, DDP is generally much faster than DP
« With DDP, each GPU gets its own process
« DDP is scalable across multiple nodes
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Practice — PyTorch

A Visual Guide to FairScale
What more can we do? —5 MODEL-OFFLOAD

Great!
You found FairScale

- FairScale |
« Models might be too large

 DDP might not scale as i
eXpectEd _f‘:lr‘I_GFIU.?L_ ;:‘I-':Etu;t;‘ure ~—> GRADIENT ACCUMULATION

your problem

—3 ACTIVATION CHECKPOINT

Out of Memory — PIPELINE

FairScale
might not be —> Optim State Sharding (ZeRO-1)
the tool for

your problem —> Sharded DDP (ZeRO-2)

H FSDP (ZeRO-3)

—> FP16

Have you tried Try —> ACTIVATION CHEKPOINT
PyTorch DDP? PyTorchDDP | Too slow

3 Optim State Sharding - 0SS (ZeR0O-1)

— DDP FP16 HOOK

_®— —3 Sharded DDP (ZeRO-2)

“—3 FSDP (ZeRO-3)

% ADASCALE

Reduced
Model
Accuracy

GREAT! Good luck
with your training!
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Practice ++ PyTorch Lightning

Overview
* Multi-GPU iIn Lightning
 Tracking performance
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UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice ++ PyTorch Lightning

Multi-GPU in Lightning
 Lightning makes everything very easy
* Strategy argument determines the distributed backend (DP, DDP, ...)

from pytorch_lightning import Trainer

# Two GPUs with the Data Parallel strategy
Trainer(gpus=2, strategy='dp’)

# Two nodes, each with four GPUs using Distributed Data Parallel
Trainer(num_nodes=2, gpus=4, strategy="ddp’)


https://uvadl2c.github.io/
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Practice ++ PyTorch Lightning

Multi-GPU in Lightning
« There are many finetuning options that we have not discussed

* |f you are interested, research them yourself, the documentation of PyTorch and
Lightning should be sufficient

from pytorch_lightning import Trainer

# Some examples

# Two GPUs with the ‘spawn-based’ DDP
Trainer(gpus=2, strategy='ddp_spawn’)

# Do not look for unused parameters every iteration
Trainer(num_nodes=2, gpus=4, strategy='ddp_find_unused_parameters_false")
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Practice ++ PyTorch Lightning

Tracking Performance
» GPU performance with nvtop
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Practice ++ PyTorch Lightning
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Practice ++ PyTorch Lightning

Tracking Performance
« Not every cluster has nvtop, in such cases one can watch nvidia-smi as well
* |t shows the GPU memory and utilization without any graphs
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Practice ++ PyTorch Lightning

Tracking Performance
 Profilers
A couple are built-in into Lightning
* The most comprehensive one is the PyTorch profiler

from pytorch_lightning import Trainer

# Profiling with the pytorch profiler
Trainer(profiler="pytorch")
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Practice ++ PyTorch Lightning

TraC ki n g Pe rfo rm an Ce Record l Save ] Load J trace_20.json
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* Detailed information on the  :emeesaers.
operations performed

* Check whether the CPU Is
performing its tasks ahead - thread 1 (python)
of the GPU

* Why is the GPU not
utilized?

» python (pid 0): GPU 0

Flow events ‘ Processe!
|0 ms : : 3 . |500ms : i : [1,000 n
ProfilerStep#2 Optimizer.step#SGD.step ProfilerStep#3 Optimizer.step#S!
aten:to enu training_st... aten::to enu training_st...
aten::copy_ tra... backward aten::copy_ tra... backward
aten::copy_ t... aten::copy_ t..
cudaMemcpyAsync 1| cudaMemcpyAsync t

~ Process Traces

PyTorch Profiler

PyTorch Profiler (0)
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