UNIVERSITY OF AMSTERDAM
4

Multi-GPU Training

8 High Performance
Deep Learning

Eric Marcus & Jonas Teuwen

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Overview

Overview of the subjects for the multi-GPU part

Theory
« Why GPU?
« Why multiple GPUS?
« Backends — NCCL, GLOO
« GPU operations — scatter, gather, all reduce etc.

Practice
 Data parallel
« Distributed data parallel
« What more can we do?

Practice ++
 Pytorch Lightning
 Tracking performance

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM
X

Why GPU?

* Neural networks are embarrassingly parallel

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

« The computations (mostly matrix multiplications) can be executed in parallel and are independent
« GPUs excel exactly at such parallel computations due to their architecture

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

CPU

L2 Cache

GPU

The large amount of cores is ideally suited for independent parallel
computations. Source: NVIDIA

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM
X

Why multiple GPU?

« Example: OpenAl'’s CLIP

 Large model trained on combination
of Images and text

 Dataset of 400 million (image, text)
pairs

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

1. Contrastive pre-training

Text

Encoder l
T
— I I T
— I I Ty
Image
Encoder 5 Sl
— Iy IyT,

CLIP learns image and text combinations, to later

I T,

I2 'TZ

ISITZ

IN 'T2

I;T;

IZ 'T3

I3 'T3

IN 'T3

predict captions for images. Source: OpenAl

I Ty

IZ 'TN

I3 'TN

IN 'TN

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM
X

Why multiple GPU?

Example: OpenAl’s CLIP

If we were to train this setup on a
single ‘household” GPU

Training time: ~ 30 years..

Instead, It was trained on 592 GPUSs In
18 days

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

1. Contrastive pre-training

Text

Encoder l
T
— I I T
— I I Ty
Image
Encoder 5 Sl
— Iy IyT,

CLIP learns image and text combinations, to later

I T,

I2 'TZ

I3'T2

IN 'T2

I;T;

IZ 'T3

I3 'T3

IN 'T3

predict captions for images. Source: OpenAl

I Ty

I2 'TN

I3 'TN

IN 'TN

https://uvadl2c.github.io/

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

UNIVERSITY OF AMSTERDAM
X

Why multiple GPU?

« Example: large generative models

(b)

* In this example we generated lung
nodules on healthy lung images

» These generative models are large and
need loads of data

(d)

Generative models can be used to expand datasets by

generating ‘fake’ examples of lung nodules.
Source: NKI

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Why multiple GPU?

« Example: large language models
» Models can be too large to fit in the GPU memory

Model Name Nparams Mayers Omodel Mheads Ohead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~4
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 1M 2.0 x 10~
GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-36.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 1074

GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~*

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Backends

How do we control and coordinate the multiple GPUs

« Levels of abstraction Lightning — Pytorch — Backend — C++/CUDA — ...

« We will consider lightning, torch and the communication backends (NCCL/GLOOQ)

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Backends - x

 Pytorch distributed support three i ’ ‘ ? X ‘

built-in backends deedce y y : X y

* For multi-GPU: NCCL Is s x y : X y

generally the fastest and most o)) |))
versatile g

* When appropriately configured o : \/ | X \/

there Is near-linear scalability

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations

Basic Dictionary
« Group, world and ranks

Point-to-Point Communication
 Send/ Recv

Collective Communication
e Scatter
» Broadcast
* Reduce
» All-Reduce

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations

Basic Dictionary
« Node: a system in the compute cluster, e.g., a server with multiple GPUs
Global/Node Rank: unique identifier for each node

Local Rank: unique identifier for each process (usually each GPU corresponds to
one process) on a single node

World: a group containing all the processes, which can communicate with each other

We will see these terms in practice in the tutorial

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations — Point-to-Point

 Any Point-to-Point communication is achieved using Send and Recv

 Can be used for any communication pattern between ranks

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvVA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations — Point-to-Point

Send / Recv
* Send tensor to another rank
* Receive tensor from another rank Rank 0 Rank 1

send
o Example uSage. when we want very \

fine-grained control
Rank 2 Rank 3

recv

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations — Point-to-Point

Send / Recv
Accurate, Large Minibatch SGD:
« Example research usages Training ImageNet in 1 Hour

Priya Goyal Piotr Dollar Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangging Jia Kaiming He

Facebook

Deep Speech: Scaling up end-to-end
speech recognition

Awni Hannun; Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,
Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, Andrew Y. Ng

Baidu Research — Silicon Valley Al Lab

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations — Collective

 Must be called for each rank

« |f this does not happen, we can enter a so-called deadlock, in which we are forever
waiting for one (or more) of the ranks

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvVA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations — Collective

Scatter [0,1,2]
* Distributes from one rank to all others Rank 0
« Example usage: divide batches among /J\
ranks
Rank 0 Rank 1 Rank 2
[0] [1] [2]

« Sidenote: scatter is not done using NCCL

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations — Collective

Broadcast
« Copy data to all other ranks
« Example usage: copy model to all ranks

‘rank0 i rank1l { rank 2 | rank 3 i ‘rank0 i rank1 i rank 2 | rank 3 |
5 = . (root) | ; 5 5 5 5 !
in out out out out
out[i] = in[i]

Broadcast copies data from a ‘root’rank to all others
Source: NVIDIA

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM
X

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

Multi-GPU Operations — Collective

Reduce

 Perform reductions (e.g., sum, average, max,..) across devices and write to one

‘root’ device

« Example usage: average or sum a metric from all ranks
« The Gather operation is a Reduce with a concatenate operation

rank0 [rank1 | rank 2 | rank 3 |

II)

rank0 | rank1 | rank 2 | rank 3 |

. (root) |

out

qut[l] = snl,lmﬁn}([i]]l

Example of a reduce operation with ‘sum’
Source: NVIDIA

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations — Collective

All Reduce
A reduce operation followed by a broadcast

« Example usage: averaging the gradients in a backpropagation (see distributed data
parallel)

i rank0 | rank1 | rank 2 | rank 3 | rank0 | rank1 | rank 2 | rank 3 |

II in3 |) | out ||| out || out || out

qutﬁ] = sﬁmﬂﬂx[i])l

Example of an all-reduce operation with ‘sum’
Source: NVIDIA

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Multi-GPU Operations — Collective

Other operations
* In the tutorial we will discuss AllGather and ReduceScatter

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice — PyTorch Frameworks

Overview
» Data Parallel
 Distributed Data Parallel
e Can we do more?

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice — PyTorch Data Parallel

Overview
 1: Split mini-batch and scatter over ranks
2. Broadcast model over all ranks
3: Forward the mini-batches through the model
4: Reduce the gradients to rank O
5: Perform the backpropagation and obtain updated model
Repeat

 Sidenote: data parallel allows for only one node — no multinode training

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice — PyTorch Data Parallel

The GIFs shown In the lectures can be found at:

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba

DataParallel has a lot of communication overhead
Source: W. Falcon — PyTorch Lightning

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice — PyTorch Distributed Data Parallel

Overview
« Only once: broadcast the model and initialize identically on each rank

 1: Gather data indices from a distributed sampler.
Example: 2 GPUs and dataset [0,1,2,3], could yield [0,1] for GPU 0 and [2,3] for
GPU 1

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice — PyTorch Distributed Data Parallel

Overview
« Only once: broadcast the model and initialize identically on each rank

 1: Gather data indices from a distributed sampler
2. Forward through model
3: All Reduce the gradients whilst every rank is performing a backpropagation
4: All ranks perform an optimization step with the synchronized gradients
Repeat

« Sidenote: multinode training Is supported

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice — PyTorch Distributed Data Parallel

The GIFs shown In the lectures can be found at:

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba

DDP avoids the large amounts of communication
overhead by synchronizing gradients
Source: W. Falcon — PyTorch Lightning

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice — PyTorch Distributed Data Parallel

Overview
* Due to the lack of overhead, DDP is generally much faster than DP
« With DDP, each GPU gets its own process
« DDP is scalable across multiple nodes

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice — PyTorch

A Visual Guide to FairScale
What more can we do? —5 MODEL-OFFLOAD

Great!
You found FairScale

- FairScale |
« Models might be too large

 DDP might not scale as i
eXpectEd _f‘:lr‘I_GFIU.?L_ ;:‘I-':Etu;t;‘ure ~—> GRADIENT ACCUMULATION

your problem

—3 ACTIVATION CHECKPOINT

Out of Memory — PIPELINE

FairScale
might not be —> Optim State Sharding (ZeRO-1)
the tool for

your problem —> Sharded DDP (ZeRO-2)

H FSDP (ZeRO-3)

—> FP16

Have you tried Try —> ACTIVATION CHEKPOINT
PyTorch DDP? PyTorchDDP | Too slow

3 Optim State Sharding - 0SS (ZeR0O-1)

— DDP FP16 HOOK

_®— —3 Sharded DDP (ZeRO-2)

“—3 FSDP (ZeRO-3)

% ADASCALE

Reduced
Model
Accuracy

GREAT! Good luck
with your training!

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice ++ PyTorch Lightning

Overview
* Multi-GPU iIn Lightning
 Tracking performance

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice ++ PyTorch Lightning

Multi-GPU in Lightning
 Lightning makes everything very easy
* Strategy argument determines the distributed backend (DP, DDP, ...)

from pytorch_lightning import Trainer

Two GPUs with the Data Parallel strategy
Trainer(gpus=2, strategy='dp’)

Two nodes, each with four GPUs using Distributed Data Parallel
Trainer(num_nodes=2, gpus=4, strategy="ddp’)

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice ++ PyTorch Lightning

Multi-GPU in Lightning
« There are many finetuning options that we have not discussed

* |f you are interested, research them yourself, the documentation of PyTorch and
Lightning should be sufficient

from pytorch_lightning import Trainer

Some examples

Two GPUs with the ‘spawn-based’ DDP
Trainer(gpus=2, strategy='ddp_spawn’)

Do not look for unused parameters every iteration
Trainer(num_nodes=2, gpus=4, strategy='ddp_find_unused_parameters_false")

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice ++ PyTorch Lightning

Tracking Performance
» GPU performance with nvtop

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice ++ PyTorch Lightning

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice ++ PyTorch Lightning

Tracking Performance
« Not every cluster has nvtop, in such cases one can watch nvidia-smi as well
* |t shows the GPU memory and utilization without any graphs

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io
X

Practice ++ PyTorch Lightning

Tracking Performance
 Profilers
A couple are built-in into Lightning
* The most comprehensive one is the PyTorch profiler

from pytorch_lightning import Trainer

Profiling with the pytorch profiler
Trainer(profiler="pytorch")

https://uvadl2c.github.io/

UNIVERSITY OF AMSTERDAM
X

Practice ++ PyTorch Lightning

TraC ki n g Pe rfo rm an Ce Record l Save] Load J trace_20.json

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

* Detailed information on the :emeesaers.
operations performed

* Check whether the CPU Is
performing its tasks ahead - thread 1 (python)
of the GPU

* Why is the GPU not
utilized?

» python (pid 0): GPU 0

Flow events ‘ Processe!
|0 ms : : 3 . |500ms : i : [1,000 n
ProfilerStep#2 Optimizer.step#SGD.step ProfilerStep#3 Optimizer.step#S!
aten:to enu training_st... aten::to enu training_st...
aten::copy_ tra... backward aten::copy_ tra... backward
aten::copy_ t... aten::copy_ t..
cudaMemcpyAsync 1| cudaMemcpyAsync t

~ Process Traces

PyTorch Profiler

PyTorch Profiler (0)

https://uvadl2c.github.io/

