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Overview of the subjects for the multi-GPU part

Theory

• Why GPU?

• Why multiple GPUS?

• Backends – NCCL, GLOO

• GPU operations – scatter, gather, all reduce etc.

Practice

• Data parallel

• Distributed data parallel

• What more can we do?

Practice ++

• Pytorch Lightning

• Tracking performance

Overview
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• Neural networks are embarrassingly parallel

• The computations (mostly matrix multiplications) can be executed in parallel and are independent

• GPUs excel exactly at such parallel computations due to their architecture 

Why GPU?

The large amount of cores is ideally suited for independent parallel 

computations. Source: NVIDIA
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Why multiple GPU?

• Example: OpenAI’s CLIP

• Large model trained on combination 

of images and text

• Dataset of 400 million (image, text) 

pairs 

CLIP learns image and text combinations, to later 

predict captions for images. Source: OpenAI
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Why multiple GPU?

• Example: OpenAI’s CLIP

• If we were to train this setup on a 

single ‘household’ GPU

• Training time: ~ 30 years..

• Instead, it was trained on 592 GPUs in 

18 days

CLIP learns image and text combinations, to later 

predict captions for images. Source: OpenAI
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Why multiple GPU?

• Example: large generative models

• In this example we generated lung 

nodules on healthy lung images

• These generative models are large and 

need loads of data

Generative models can be used to expand datasets by 

generating ‘fake’ examples of lung nodules. 

Source: NKI
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• Example: large language models

• Models can be too large to fit in the GPU memory

Why multiple GPU?
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Multi-GPU Backends

How do we control and coordinate the multiple GPUs

• Levels of abstraction Lightning – Pytorch – Backend – C++/CUDA – …

• We will consider lightning, torch and the communication backends (NCCL/GLOO)
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Multi-GPU Backends

• Pytorch distributed support three 

built-in backends

• For multi-GPU: NCCL is 

generally the fastest and most 

versatile

• When appropriately configured 

there is near-linear scalability
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Basic Dictionary

• Group, world and ranks

Point-to-Point Communication

• Send / Recv

Collective Communication

• Scatter

• Broadcast 

• Reduce 

• All-Reduce

Multi-GPU Operations
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Basic Dictionary

• Node: a system in the compute cluster, e.g., a server with multiple GPUs

• Global/Node Rank: unique identifier for each node

• Local Rank: unique identifier for each process (usually each GPU corresponds to 
one process) on a single node

• World: a group containing all the processes, which can communicate with each other

• We will see these terms in practice in the tutorial

Multi-GPU Operations
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• Any Point-to-Point communication is achieved using Send and Recv

• Can be used for any communication pattern between ranks

Multi-GPU Operations – Point-to-Point
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Send / Recv

• Send tensor to another rank

• Receive tensor from another rank

• Example usage: when we want very

fine-grained control

Multi-GPU Operations – Point-to-Point

Rank 0 Rank 1

Rank 2 Rank 3

send

recv
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Send / Recv

• Example research usages

Multi-GPU Operations – Point-to-Point
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• Must be called for each rank

• If this does not happen, we can enter a so-called deadlock, in which we are forever 

waiting for one (or more) of the ranks

Multi-GPU Operations – Collective
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Scatter

• Distributes from one rank to all others

• Example usage: divide batches among 

ranks

• Sidenote: scatter is not done using NCCL

Multi-GPU Operations – Collective

Rank 0

Rank 0 Rank 1 Rank 2

[0,1,2]

[0] [1] [2]

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/


Broadcast

• Copy data to all other ranks

• Example usage: copy model to all ranks

Multi-GPU Operations – Collective

Broadcast copies data from a ‘root’ rank to all others

Source: NVIDIA
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Reduce

• Perform reductions (e.g., sum, average, max,..) across devices and write to one 
‘root’ device

• Example usage: average or sum a metric from all ranks

• The Gather operation is a Reduce with a concatenate operation

Multi-GPU Operations – Collective

Example of a reduce operation with ‘sum’

Source: NVIDIA
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All Reduce

• A reduce operation followed by a broadcast

• Example usage: averaging the gradients in a backpropagation (see distributed data 

parallel)

Multi-GPU Operations – Collective

Example of an all-reduce operation with ‘sum’

Source: NVIDIA
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Other operations

• In the tutorial we will discuss AllGather and ReduceScatter

Multi-GPU Operations – Collective
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Overview

• Data Parallel

• Distributed Data Parallel

• Can we do more?

Practice – PyTorch Frameworks
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Overview

• 1: Split mini-batch and scatter over ranks

• 2: Broadcast model over all ranks

• 3: Forward the mini-batches through the model

• 4: Reduce the gradients to rank 0

• 5: Perform the backpropagation and obtain updated model

• Repeat

• Sidenote: data parallel allows for only one node – no multinode training

Practice – PyTorch Data Parallel
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Practice – PyTorch Data Parallel

DataParallel has a lot of communication overhead 

Source: W. Falcon – PyTorch Lightning

The GIFs shown in the lectures can be found at:

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
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Overview

• Only once: broadcast the model and initialize identically on each rank

• 1: Gather data indices from a distributed sampler. 

Example: 2 GPUs and dataset [0,1,2,3], could yield [0,1] for GPU 0 and [2,3] for 

GPU 1

Practice – PyTorch Distributed Data Parallel
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Overview

• Only once: broadcast the model and initialize identically on each rank

• 1: Gather data indices from a distributed sampler

• 2: Forward through model

• 3: All Reduce the gradients whilst every rank is performing a backpropagation

• 4: All ranks perform an optimization step with the synchronized gradients

• Repeat

• Sidenote: multinode training is supported

Practice – PyTorch Distributed Data Parallel
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Practice – PyTorch Distributed Data Parallel

DDP avoids the large amounts of communication 

overhead by synchronizing gradients

Source: W. Falcon – PyTorch Lightning

The GIFs shown in the lectures can be found at:

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
https://uvadl2c.github.io/


Practice – PyTorch Distributed Data Parallel

Overview

• Due to the lack of overhead, DDP is generally much faster than DP

• With DDP, each GPU gets its own process 

• DDP is scalable across multiple nodes
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Practice – PyTorch

What more can we do?

• FairScale

• Models might be too large

• DDP might not scale as 

expected
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Overview

• Multi-GPU in Lightning

• Tracking performance

Practice ++ PyTorch Lightning
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Multi-GPU in Lightning

• Lightning makes everything very easy

• Strategy argument determines the distributed backend (DP, DDP, …)

Practice ++ PyTorch Lightning

from pytorch_lightning import Trainer

# Two GPUs with the Data Parallel strategy

Trainer(gpus=2, strategy='dp')

# Two nodes, each with four GPUs using Distributed Data Parallel

Trainer(num_nodes=2, gpus=4, strategy='ddp')
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Multi-GPU in Lightning

• There are many finetuning options that we have not discussed

• If you are interested, research them yourself, the documentation of PyTorch and 

Lightning should be sufficient

Practice ++ PyTorch Lightning

from pytorch_lightning import Trainer

# Some examples

# Two GPUs with the ‘spawn-based’ DDP

Trainer(gpus=2, strategy='ddp_spawn')

# Do not look for unused parameters every iteration

Trainer(num_nodes=2, gpus=4, strategy='ddp_find_unused_parameters_false')
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Tracking Performance

• GPU performance with nvtop

Practice ++ PyTorch Lightning
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Practice ++ PyTorch Lightning
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Practice ++ PyTorch Lightning

Tracking Performance

• Not every cluster has nvtop, in such cases one can watch nvidia-smi as well

• It shows the GPU memory and utilization without any graphs
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Tracking Performance

• Profilers

• A couple are built-in into Lightning

• The most comprehensive one is the PyTorch profiler

Practice ++ PyTorch Lightning

from pytorch_lightning import Trainer

# Profiling with the pytorch profiler

Trainer(profiler='pytorch')
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Tracking Performance

• Detailed information on the 

operations performed

• Check whether the CPU is 

performing its tasks ahead 

of the GPU

• Why is the GPU not 

utilized?

Practice ++ PyTorch Lightning
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