
Eric Marcus & Jonas Teuwen

High Performance

Deep Learning

Multi-GPU Training

Overview of the subjects for the multi-GPU part

Theory

• Why GPU?

• Why multiple GPUS?

• Backends – NCCL, GLOO

• GPU operations – scatter, gather, all reduce etc.

Practice

• Data parallel

• Distributed data parallel

• What more can we do?

Practice ++

• Pytorch Lightning

• Tracking performance

Overview

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

• Neural networks are embarrassingly parallel

• The computations (mostly matrix multiplications) can be executed in parallel and are independent

• GPUs excel exactly at such parallel computations due to their architecture

Why GPU?

The large amount of cores is ideally suited for independent parallel

computations. Source: NVIDIA

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Why multiple GPU?

• Example: OpenAI’s CLIP

• Large model trained on combination

of images and text

• Dataset of 400 million (image, text)

pairs

CLIP learns image and text combinations, to later

predict captions for images. Source: OpenAI

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Why multiple GPU?

• Example: OpenAI’s CLIP

• If we were to train this setup on a

single ‘household’ GPU

• Training time: ~ 30 years..

• Instead, it was trained on 592 GPUs in

18 days

CLIP learns image and text combinations, to later

predict captions for images. Source: OpenAI

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Why multiple GPU?

• Example: large generative models

• In this example we generated lung

nodules on healthy lung images

• These generative models are large and

need loads of data

Generative models can be used to expand datasets by

generating ‘fake’ examples of lung nodules.

Source: NKI

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

• Example: large language models

• Models can be too large to fit in the GPU memory

Why multiple GPU?

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Multi-GPU Backends

How do we control and coordinate the multiple GPUs

• Levels of abstraction Lightning – Pytorch – Backend – C++/CUDA – …

• We will consider lightning, torch and the communication backends (NCCL/GLOO)

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Multi-GPU Backends

• Pytorch distributed support three

built-in backends

• For multi-GPU: NCCL is

generally the fastest and most

versatile

• When appropriately configured

there is near-linear scalability

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Basic Dictionary

• Group, world and ranks

Point-to-Point Communication

• Send / Recv

Collective Communication

• Scatter

• Broadcast

• Reduce

• All-Reduce

Multi-GPU Operations

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Basic Dictionary

• Node: a system in the compute cluster, e.g., a server with multiple GPUs

• Global/Node Rank: unique identifier for each node

• Local Rank: unique identifier for each process (usually each GPU corresponds to
one process) on a single node

• World: a group containing all the processes, which can communicate with each other

• We will see these terms in practice in the tutorial

Multi-GPU Operations

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

• Any Point-to-Point communication is achieved using Send and Recv

• Can be used for any communication pattern between ranks

Multi-GPU Operations – Point-to-Point

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Send / Recv

• Send tensor to another rank

• Receive tensor from another rank

• Example usage: when we want very

fine-grained control

Multi-GPU Operations – Point-to-Point

Rank 0 Rank 1

Rank 2 Rank 3

send

recv

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Send / Recv

• Example research usages

Multi-GPU Operations – Point-to-Point

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

• Must be called for each rank

• If this does not happen, we can enter a so-called deadlock, in which we are forever

waiting for one (or more) of the ranks

Multi-GPU Operations – Collective

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Scatter

• Distributes from one rank to all others

• Example usage: divide batches among

ranks

• Sidenote: scatter is not done using NCCL

Multi-GPU Operations – Collective

Rank 0

Rank 0 Rank 1 Rank 2

[0,1,2]

[0] [1] [2]

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Broadcast

• Copy data to all other ranks

• Example usage: copy model to all ranks

Multi-GPU Operations – Collective

Broadcast copies data from a ‘root’ rank to all others

Source: NVIDIA

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Reduce

• Perform reductions (e.g., sum, average, max,..) across devices and write to one
‘root’ device

• Example usage: average or sum a metric from all ranks

• The Gather operation is a Reduce with a concatenate operation

Multi-GPU Operations – Collective

Example of a reduce operation with ‘sum’

Source: NVIDIA

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

All Reduce

• A reduce operation followed by a broadcast

• Example usage: averaging the gradients in a backpropagation (see distributed data

parallel)

Multi-GPU Operations – Collective

Example of an all-reduce operation with ‘sum’

Source: NVIDIA

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Other operations

• In the tutorial we will discuss AllGather and ReduceScatter

Multi-GPU Operations – Collective

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Overview

• Data Parallel

• Distributed Data Parallel

• Can we do more?

Practice – PyTorch Frameworks

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Overview

• 1: Split mini-batch and scatter over ranks

• 2: Broadcast model over all ranks

• 3: Forward the mini-batches through the model

• 4: Reduce the gradients to rank 0

• 5: Perform the backpropagation and obtain updated model

• Repeat

• Sidenote: data parallel allows for only one node – no multinode training

Practice – PyTorch Data Parallel

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Practice – PyTorch Data Parallel

DataParallel has a lot of communication overhead

Source: W. Falcon – PyTorch Lightning

The GIFs shown in the lectures can be found at:

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
https://uvadl2c.github.io/

Overview

• Only once: broadcast the model and initialize identically on each rank

• 1: Gather data indices from a distributed sampler.

Example: 2 GPUs and dataset [0,1,2,3], could yield [0,1] for GPU 0 and [2,3] for

GPU 1

Practice – PyTorch Distributed Data Parallel

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Overview

• Only once: broadcast the model and initialize identically on each rank

• 1: Gather data indices from a distributed sampler

• 2: Forward through model

• 3: All Reduce the gradients whilst every rank is performing a backpropagation

• 4: All ranks perform an optimization step with the synchronized gradients

• Repeat

• Sidenote: multinode training is supported

Practice – PyTorch Distributed Data Parallel

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Practice – PyTorch Distributed Data Parallel

DDP avoids the large amounts of communication

overhead by synchronizing gradients

Source: W. Falcon – PyTorch Lightning

The GIFs shown in the lectures can be found at:

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
https://uvadl2c.github.io/

Practice – PyTorch Distributed Data Parallel

Overview

• Due to the lack of overhead, DDP is generally much faster than DP

• With DDP, each GPU gets its own process

• DDP is scalable across multiple nodes

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Practice – PyTorch

What more can we do?

• FairScale

• Models might be too large

• DDP might not scale as

expected

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Overview

• Multi-GPU in Lightning

• Tracking performance

Practice ++ PyTorch Lightning

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Multi-GPU in Lightning

• Lightning makes everything very easy

• Strategy argument determines the distributed backend (DP, DDP, …)

Practice ++ PyTorch Lightning

from pytorch_lightning import Trainer

Two GPUs with the Data Parallel strategy

Trainer(gpus=2, strategy='dp')

Two nodes, each with four GPUs using Distributed Data Parallel

Trainer(num_nodes=2, gpus=4, strategy='ddp')

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Multi-GPU in Lightning

• There are many finetuning options that we have not discussed

• If you are interested, research them yourself, the documentation of PyTorch and

Lightning should be sufficient

Practice ++ PyTorch Lightning

from pytorch_lightning import Trainer

Some examples

Two GPUs with the ‘spawn-based’ DDP

Trainer(gpus=2, strategy='ddp_spawn')

Do not look for unused parameters every iteration

Trainer(num_nodes=2, gpus=4, strategy='ddp_find_unused_parameters_false')

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Tracking Performance

• GPU performance with nvtop

Practice ++ PyTorch Lightning

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Practice ++ PyTorch Lightning

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Practice ++ PyTorch Lightning

Tracking Performance

• Not every cluster has nvtop, in such cases one can watch nvidia-smi as well

• It shows the GPU memory and utilization without any graphs

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Tracking Performance

• Profilers

• A couple are built-in into Lightning

• The most comprehensive one is the PyTorch profiler

Practice ++ PyTorch Lightning

from pytorch_lightning import Trainer

Profiling with the pytorch profiler

Trainer(profiler='pytorch')

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

Tracking Performance

• Detailed information on the

operations performed

• Check whether the CPU is

performing its tasks ahead

of the GPU

• Why is the GPU not

utilized?

Practice ++ PyTorch Lightning

Prepared for the UvA Deep Learning 2 course - https://uvadl2c.github.io

https://uvadl2c.github.io/

