
Forward propagation with
implicit layers

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Fixed points as points of no change

• A fixed point for a function is a point for which the function has
no influence on the point

• In other words, the input and output of is the same:

• Optimisation, e.g., gradient descent, is a fixed point problem

• If is differentiable, then we can deploy our favourite auto-diff library

f : ℝn → ℝn z ∈ ℝn

f z = f(z)

wt+1 = wt − η
∂ℓ
∂w

⇒

w = f(w) where f(w) = w − η
∂ℓ
∂w

f

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Fixed points with parameters

• More generally, in our neural networks we also have parameters

• We can then have a parameterised fixed-point problem with function
, which is parameterised by

• For this -parameterised system of equations we can ask things like how will the
fixed point change with ?

f : ℝp × ℝn → ℝn α ∈ ℝp

z = f(a, z)

α
α

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Fixed-point iteration

• We have a function with a “self-dependency”:

• Hopefully, by repeatedly applying the function, the output should converge to a
“fixed” value

• For instance, for a neural network layer that feeds itself:

such that

• Relates to recurrent backdrop

z = f(a, z)

z*

z = tanh(Wz+x)
z(t=2) = tanh(Wz(t=1) + x)
z(t=3) = tanh(Wz(t=2) + x)…

z(t) ≈ z(t−1) = z*

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Fixed-points & root-finding

• Fixed-point problems can be rewritten as system of (non-
linear) equations

• Then, finding the fixed point is equivalent to root-finding

• We want to solve the equation

• For instance, solve

• We iteratively improve on a an initial solution

• Until we converge to the “root” of

z = f(x, z) ⇒ g(x, z) = z − f(x, z) = 0

g(x, z) = 0

g(x) = x2 − 2 = 0

x2 − 2 = 0

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Convergence

• not need always to converge to a fixed value

• It can also diverge or oscillate

• If the function is on the real line with real values and Lipschitz continuous
with a Lipschitz constant (does not change too fast), then it converges (wiki)

• For the usual NNs and nonlinearities we can assume convergence

z = f(x, z) z⋆

f(x, z)
L < 1

|z(t) − z(t−1) | ≤ Lt−1 |z(1) − z(0) |

http://uvadl2c.github.io
https://en.wikipedia.org/wiki/Fixed-point_iteration

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

iterate until convergence

while self.iterations < self.max_iter:

 z_next = torch.tanh(self.linear(z) + x)

 self.err = torch.norm(z - z_next)

 z = z_next

 self.iterations += 1

 if self.err < self.tol:

 break

Root-finding: Naive forward iteration

• Simplest way to solve the root: naive iterations

• Still, may take large number of iterations

• Also, might not even reach the min tolerance or
diverge for certain parameter values

z(t=1) = random init
z(t=2) = tanh(Wz(t=1) + x)
z(t=3) = tanh(Wz(t=2) + x)…

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Root-finding: Newton’s method

• As we define the implicit layer abstractly , any root-finding algorithm
works

• A good alternative is Newton’s method that uses the Jacobian (or quasi-Newton)

For ,

• For the Jacobian we can use our auto-diff libraries (PyTorch, Jax, …)

g(x, z) = 0

g : ℝn → ℝn z := z − (∂g
∂z)

−1
g(z)

∂g
∂z

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Root-finding: Newton’s method

For ,

• The Jacobian and its inverse can be quite expensive, especially for many iterations

• We must store intermediate states in memory

• Also, backpropagating with long chains and repeating inverses can be
computationally unstable when inverse close to singular (determinant)

• Forward prop might converge still backprop gradients might be with errors

g : ℝn → ℝn z := z − (∂g
∂z)

−1
g(z)

→ 0

←

http://uvadl2c.github.io

