Forward propagation with
implicit layers

Fixed points as points of no change

n

A fixed point for a function f : R” — R"is a point z € R" for which the function has

no influence on the point

In other words, the input and output of fis the same: z = f(z)

Optimisation, e.g., gradient descent, is a fixed point problem

ot
Wiel = Wr = ’7% =
ot
w = f(w) where f(w) = w — =
W

If fis differentiable, then we can deploy our favourite auto-diff library

E. Gavves Differential equations in neural networks http://uvad|2c.qgithub.io

http://uvadl2c.github.io

* More generally, in our neural networks we also have parameters

* We can then have a parameterised fixed-point problem with function

R XI

n

Fixed points with parameters

— |

" which is parameterised by a € R”

z = f(a,z)

 For this a-parameterised system of equations we can ask things like how will the

fixed point change with a?

E. Gavves

Differential equations in neural networks

http:

uvadl2c.qithub.io

http://uvadl2c.github.io

Fixed-point iteration

* We have a function with a “self-dependency”: z = f(a, 2)

* Hopefully, by repeatedly applying the function, the output should converge to a
“ixed” value z*

* For instance, for a neural network layer that feeds itself: z = tanh(Wz+x)
7= = tanh(Wz"=D + x)
7= = tanh(Wz\"=2 + x)...

such that 7 ~ 7= = z*

 Relates to recurrent backdrop

E. Gavves Differential equations in neural networks http://uvadl2c.qgithub.io

http://uvadl2c.github.io

Fixed-points & root-finding

* Fixed-point problems can be rewritten as system of (non-
linear) equations

* Then, finding the fixed point is equivalent to root-finding
z=fx,2) > gx,2) =2~ f(x,2) = 0 .
* We want to solve the equation g(x,z) = 0 '

» For instance, solve g(x) = x* =2 =0

* We iteratively improve on a an initial solution

» Until we converge to the “root” of x* — 2 = ()

E. Gavves Differential equations in neural networks http://uvad|2c.qgithub.io

http://uvadl2c.github.io

Convergence

z = f(x, z) not need always to converge to a fixed value z*

[t can also diverge or oscillate

If the function f(x, z) is on the real line with real values and Lipschitz continuous

with a Lipschitz constant L < 1 (does not change too fast), then it converges (wiki)

For the usual NNs and nonlinearities we can assume convergence

E. Gavves

170 — =D < L=t (D 200

Differential equations in neural networks

http:

uvadl2c.qithub.io

http://uvadl2c.github.io
https://en.wikipedia.org/wiki/Fixed-point_iteration

Root-finding: Naive forward iteration

» Simplest way to solve the root: naive iterations

—1 _ .
Z() = random init # iterate until convergence
=2) f—1 while self.iterations < self.max_iter:
Z()._-tarﬂ1(VVZ()'+'X3 z_next = torch.tanh(self.linear(z) + x)

_ _ self.err = torch.norm(z - z next)
Z(t_g) — tanh(WZ(t_z) + .X). .o z = z next
self.1terations += 1
if self.err < self.tol:
break

» Still, may take large number of iterations

* Also, might not even reach the min tolerance or
diverge for certain parameter values

E. Gavves Differential equations in neural networks http://uvadl2c.qgithub.io

http://uvadl2c.github.io

Root-finding: Newton’s method

* As we define the implicit layer abstractly g(x, z) = 0, any root-finding algorithm
works

* A good alternative is Newton’s method that uses the Jacobian (or quasi-Newton)

0
. For the Jacobian 78 we can use our auto-diff libraries (PyTorch, Jax, ...)

07

E. Gavves Differential equations in neural networks http://uvad|2c.qgithub.io

http://uvadl2c.github.io

Root-finding: Newton’s method

The Jacobian and its inverse can be quite expensive, especially for many iterations

We must store intermediate states in memory

Also, backpropagating with long chains and repeating inverses can be

computationally unstable when inverse close to singular (determinant — 0)

Forward prop might converge « still backprop gradients might be with errors

E. Gavves

Differential equations in neural networks

http:

uvadl2c.qithub.io

http://uvadl2c.github.io

