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Fixed points as points of no change

• A fixed point for a function  is a point  for which the function has 
no influence on the point


• In other words, the input and output of  is the same: 


• Optimisation, e.g., gradient descent, is a fixed point problem


 


• If  is differentiable, then we can deploy our favourite auto-diff library

f : ℝn → ℝn z ∈ ℝn

f z = f(z)

wt+1 = wt − η
∂ℓ
∂w

⇒

w = f(w) where f(w) = w − η
∂ℓ
∂w

f
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Fixed points with parameters

• More generally, in our neural networks we also have parameters


• We can then have a parameterised fixed-point problem with function 
, which is parameterised by 





• For this -parameterised system of equations we can ask things like how will the 
fixed point change with ?

f : ℝp × ℝn → ℝn α ∈ ℝp

z = f(a, z)

α
α

http://uvadl2c.github.io


E. Gavves Differential equations in neural networks http://uvadl2c.github.io 

Fixed-point iteration

• We have a function with a “self-dependency”: 


• Hopefully, by repeatedly applying the function, the output should converge to a 
“fixed” value 


• For instance, for a neural network layer that feeds itself: 





such that 


• Relates to recurrent backdrop

z = f(a, z)

z*

z = tanh(Wz+x)
z(t=2) = tanh(Wz(t=1) + x)
z(t=3) = tanh(Wz(t=2) + x)…

z(t) ≈ z(t−1) = z*
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Fixed-points & root-finding

• Fixed-point problems can be rewritten as system of (non-
linear) equations


• Then, finding the fixed point is equivalent to root-finding





• We want to solve the equation 


• For instance, solve 


• We iteratively improve on a an initial solution


• Until we converge to the “root” of 

z = f(x, z) ⇒ g(x, z) = z − f(x, z) = 0

g(x, z) = 0

g(x) = x2 − 2 = 0

x2 − 2 = 0
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Convergence

•  not need always to converge to a fixed value 


• It can also diverge or oscillate


• If the function   is on the real line with real values and Lipschitz continuous 
with a Lipschitz constant  (does not change too fast), then it converges (wiki)





• For the usual NNs and nonlinearities we can assume convergence

z = f(x, z) z⋆

f(x, z)
L < 1

|z(t) − z(t−1) | ≤ Lt−1 |z(1) − z(0) |

http://uvadl2c.github.io
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# iterate until convergence

while self.iterations < self.max_iter:

    z_next = torch.tanh(self.linear(z) + x)

    self.err = torch.norm(z - z_next)

    z = z_next

    self.iterations += 1

    if self.err < self.tol:

        break


Root-finding: Naive forward iteration

• Simplest way to solve the root: naive iterations





• Still, may take large number of iterations


• Also, might not even reach the min tolerance or 
diverge for certain parameter values

z(t=1) = random init
z(t=2) = tanh(Wz(t=1) + x)
z(t=3) = tanh(Wz(t=2) + x)…
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Root-finding: Newton’s method

• As we define the implicit layer abstractly , any root-finding algorithm 
works


• A good alternative is Newton’s method that uses the Jacobian (or quasi-Newton)


For ,   


• For the Jacobian  we can use our auto-diff libraries (PyTorch, Jax, …)

g(x, z) = 0

g : ℝn → ℝn z := z − (∂g
∂z )

−1
g(z)

∂g
∂z
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Root-finding: Newton’s method

For ,   


• The Jacobian and its inverse can be quite expensive, especially for many iterations


• We must store intermediate states in memory


• Also, backpropagating with long chains and repeating inverses can be 
computationally unstable when inverse close to singular (determinant )


• Forward prop might converge  still backprop gradients might be with errors

g : ℝn → ℝn z := z − (∂g
∂z )

−1
g(z)

→ 0

←
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