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Naive (explicit) differentiation

• We have multiple Newton’s updates


• We must apply the chain rule on the sequence of  for all time steps of updates


• Quite expensive with large number of iterations


• We must store lots of intermediate values and Jacobians in memory


• Also, chain rule in long sequences can be quite unstable (vanishing/exploding)
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Implicit differentiation

• What if we could avoid iterations during backdrop altogether?


• In backprop, for layer  we are mainly interested in computing the gradient of 
a layer’s output w.r.t. to the layer’s input, that is 


• Let’s denote the fixed point solution of  as  with Jacobian 


• At  the implicit layer  does not change, that is its Jacobian is zero


z = f(x)
∂z
∂x

g(x, z) z⋆(x)
∂z⋆(x)

∂x
z⋆(x) g(x, z)

∂g(x, z⋆(x))
∂x

= 0
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Implicit differentiation

• The  is a function of two variables:  and 


• Importantly,  depends on the first variable  w.r.t. which we differentiate


• The chain rule “splits”  and  in . Then, it computes the gradient for 

each variable separately, while considering the other one not varying (i.e., “fixed”). 
Then, it sums up the two gradients


g(x, z⋆) x z⋆(x)

z⋆ x

x z⋆ ∂g(x, z⋆(x))
∂x

∂g(x, z⋆(x))
∂x

= 0 ⇒
∂g(x, z⋆)

∂x
Considering z⋆ fixed

+
∂g(x, z⋆(x))

∂z⋆

∂z⋆(x)
∂x

= 0
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Implicit differentiation

• By rearranging, we have





• In ), the chain rule considers the  as fixed (not dependent on ), which is 

why we use  instead


• We compute  with auto-diff at the converged  obtained from forward prop

∂g(x, z⋆)
∂x

+
∂g(x, z⋆(x))

∂z⋆

∂z⋆(x)
∂x

= 0 ⇒

∂z⋆(x)
∂x

= − (∂g(x, z⋆(x))
∂z⋆ )

−1 ∂g(x, z⋆)
∂x

∂g(x, z⋆)
∂x

z⋆(x) x

z⋆

∂g(x, z⋆)
∂x

z⋆
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Implicit function theorem

• More generally, for a continuously differentiable function   with non-singular 
Jacobian, and with roots at 


• There is a unique continuous function  representing all fixed-points 





• where open sets in the parameter and input space


f
a0, z0 : f(a0, z0) = 0

z⋆ : Sα0
→ Sz0

z0 = z⋆(α0)  such that  f(α, z⋆(α)) = 0 ∀α ∈ Sα0

Sα0
, Sz0
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Implicit differentiation: Things to consider

• In practice, we cannot compute the inverse  directly


• An iterative process is needed instead


• Importantly, with the implicit differentiation it does not matter what algorithm/
solver we use to find the root 


• Note:  both in the forward prop of Newton’s method, as well as the back 

prop of implicit differentiation

( ∂g(x, z⋆(x))
∂z⋆ )

−1

z⋆

∂g(x, z⋆)
∂z⋆
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Implementing implicit differentiation

• Given our loss function  the gradient is 


• No need to compute the full Jacobian  or the full and its inverse


• Simple vector-Jacobian product; we can use a linear equation solver


ℓ
∂ℓ
∂x

=
∂ℓ
∂z⋆

∂z⋆

∂x
= −

∂ℓ
∂z⋆ ( ∂g

∂z⋆ )
−1 ∂g

∂x
∂z⋆

∂x
∂g
∂z⋆

xA = b ⇔ x = bA−1

http://uvadl2c.github.io

