Backpropagation with implicit
layers

Naive (explicit) differentiation

We have multiple Newton'’s updates

We must apply the chain rule on the sequence of z for all time steps of updates
Quite expensive with large number of iterations
We must store lots of intermediate values and Jacobians in memory

Also, chain rule in long sequences can be quite unstable (vanishing/exploding)

E. Gavves Differential equations in neural networks http://uvadl2c.qgithub.io

http://uvadl2c.github.io

Implicit differentiation

What if we could avoid iterations during backdrop altogether?

In backprop, for layer z = f(x) we are mainly interested in computing the gradient of

07

a layer’s output w.r.t. to the layer’s input, that is —

Let’s denote the fixed point solution of g(x, z) as z*(x) with Jacobian

ox

07 (x)
0x

At z*(x) the implicit layer g(x, z) does not change, that is its Jacobian is zero

E. Gavves

0g0x, () _
0x

0

Differential equations in neural networks

http://uvad|2c.qgithub.io

http://uvadl2c.github.io

Implicit differentiation

» The g(x, z¥) is a function of two variables: x and z*(x)

» Importantly, z* depends on the first variable x w.r.t. which we differentiate

0g(x, 7% (x
. The chain rule “splits” x and z* in 8(()). Then, it computes the gradient for

0x
each variable separately, while considering the other one not varying (i.e., “fixed”).

Then, it sums up the two gradients

0g(x,z* og(x, 7" 0g(x,z* 0z7*
g(x, 27 (x)) 0o g(x,z”) N g(x,z27(x)) 0z™(x) 0
ox ox az* ox
Consideri%g -+ fixed

E. Gavves Differential equations in neural networks http://uvad|2c.qgithub.io

http://uvadl2c.github.io

Implicit differentiation

* By rearranging, we have
0g(x,27) , 98(x, z¥(x)) 97*(x)

0=

0g(x,z7) | . — L
. In), the chain rule considers the z™(x) as fixed (not dependent on x), which is

ox
why we use z* instead

0g(x, 7"
. We compute g(a) with auto-diff at the converged z* obtained from forward prop
X

E. Gavves Differential equations in neural networks http://uvad|2c.qgithub.io

http://uvadl2c.github.io

Implicit function theorem

* More generally, for a continuously differentiable function f with non-singular

Jacobian, and with roots at a, z, : f(ay, z9) = 0
» There is a unique continuous function z* : Sa() — SZO representing all fixed-points

zo = 2"(ay) suchthat fla,z*(a)) =0 Va € Sa,

» where Sao, SZOopen sets in the parameter and input space

E. Gavves Differential equations in neural networks http://uvadl2c.qgithub.io

http://uvadl2c.github.io

Implicit differentiation: Things to consider

In practice, we cannot compute the inverse (

0g(x, z*(x))

oz*

An iterative process is needed instead

-
) directly

Importantly, with the implicit differentiation it does not matter what algorithm/

solver we use to find the root z*
0g(x,z™)

Note: both in the forward prop of Newton’s method, as well as the back

0z*
prop of implicit differentiation

E. Gavves

Differential equations in neural networks

http://uvad|2c.qgithub.io

http://uvadl2c.github.io

Implementing implicit differentiation

| | . of of ozF or s dg \~log
. Given our loss function ¢ the gradient is — = = () =

ox dz* ox 0z* \oz*/) ox
. 07" g .. .
. No need to compute the full Jacobian — or the full Fand its inverse
X <

» Simple vector-Jacobian product; we can use a linear equation solver

xA=b< x=bA"!

E. Gavves Differential equations in neural networks http://uvad|2c.qgithub.io

http://uvadl2c.github.io

