
Backpropagation with implicit
layers

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Naive (explicit) differentiation

• We have multiple Newton’s updates

• We must apply the chain rule on the sequence of for all time steps of updates

• Quite expensive with large number of iterations

• We must store lots of intermediate values and Jacobians in memory

• Also, chain rule in long sequences can be quite unstable (vanishing/exploding)

z

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Implicit differentiation

• What if we could avoid iterations during backdrop altogether?

• In backprop, for layer we are mainly interested in computing the gradient of
a layer’s output w.r.t. to the layer’s input, that is

• Let’s denote the fixed point solution of as with Jacobian

• At the implicit layer does not change, that is its Jacobian is zero

z = f(x)
∂z
∂x

g(x, z) z⋆(x)
∂z⋆(x)

∂x
z⋆(x) g(x, z)

∂g(x, z⋆(x))
∂x

= 0

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Implicit differentiation

• The is a function of two variables: and

• Importantly, depends on the first variable w.r.t. which we differentiate

• The chain rule “splits” and in . Then, it computes the gradient for

each variable separately, while considering the other one not varying (i.e., “fixed”).
Then, it sums up the two gradients

g(x, z⋆) x z⋆(x)

z⋆ x

x z⋆ ∂g(x, z⋆(x))
∂x

∂g(x, z⋆(x))
∂x

= 0 ⇒
∂g(x, z⋆)

∂x
Considering z⋆ fixed

+
∂g(x, z⋆(x))

∂z⋆

∂z⋆(x)
∂x

= 0

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Implicit differentiation

• By rearranging, we have

• In), the chain rule considers the as fixed (not dependent on), which is

why we use instead

• We compute with auto-diff at the converged obtained from forward prop

∂g(x, z⋆)
∂x

+
∂g(x, z⋆(x))

∂z⋆

∂z⋆(x)
∂x

= 0 ⇒

∂z⋆(x)
∂x

= − (∂g(x, z⋆(x))
∂z⋆)

−1 ∂g(x, z⋆)
∂x

∂g(x, z⋆)
∂x

z⋆(x) x

z⋆

∂g(x, z⋆)
∂x

z⋆

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Implicit function theorem

• More generally, for a continuously differentiable function with non-singular
Jacobian, and with roots at

• There is a unique continuous function representing all fixed-points

• where open sets in the parameter and input space

f
a0, z0 : f(a0, z0) = 0

z⋆ : Sα0
→ Sz0

z0 = z⋆(α0) such that f(α, z⋆(α)) = 0 ∀α ∈ Sα0

Sα0
, Sz0

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Implicit differentiation: Things to consider

• In practice, we cannot compute the inverse directly

• An iterative process is needed instead

• Importantly, with the implicit differentiation it does not matter what algorithm/
solver we use to find the root

• Note: both in the forward prop of Newton’s method, as well as the back

prop of implicit differentiation

(∂g(x, z⋆(x))
∂z⋆)

−1

z⋆

∂g(x, z⋆)
∂z⋆

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Implementing implicit differentiation

• Given our loss function the gradient is

• No need to compute the full Jacobian or the full and its inverse

• Simple vector-Jacobian product; we can use a linear equation solver

ℓ
∂ℓ
∂x

=
∂ℓ
∂z⋆

∂z⋆

∂x
= −

∂ℓ
∂z⋆ (∂g

∂z⋆)
−1 ∂g

∂x
∂z⋆

∂x
∂g
∂z⋆

xA = b ⇔ x = bA−1

http://uvadl2c.github.io

