Jacobian-Vector & Vector-Jacobian products - An intermezzo-

Recap on gradients

- For a scalar-valued function $f : \mathbb{R}^n \to \mathbb{R}$ the gradient is *another function* $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ defined in location $x = (x_1, \dots, x_n), \nabla f(x) = [\partial f/\partial x_1, \dots, \partial f/\partial x_n]^T$ • Jacobians generalise gradients for multi-dimensional functions $\frac{\partial f}{\partial x} : \mathbb{R}^n \to \mathbb{R}^m$
- It shows how much the function output changes for small perturbations in the • respective input dimension
- The grad

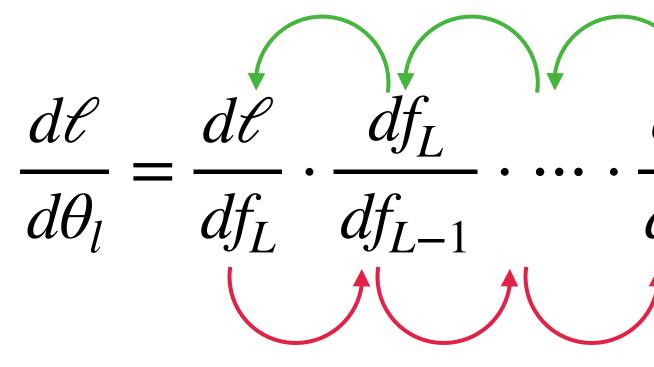
ient is a *linear function* as every partial derivative is linear

$$\frac{\partial}{\partial x_i} f(x) = \lim_{\epsilon \to 0} \frac{f(x_1, \dots, x_i + \epsilon/2, \dots, x_n) - f(x_1, \dots, x_i - \epsilon/2, \dots, x_n)}{\epsilon}$$

Differential equations in neural networks

Recap on backdrop

- Backpropagation (aka auto-differentiation) is implements the chain rule



- Forward-mode backprop (right to left), reverse-mode backprop (left to right)

• For a function $f: \mathbb{R}^n \to \mathbb{R}$ comprising a cascade of modules $f = \ell \circ f_L \circ \cdots \circ f_1(x, \theta)$

$$\frac{df_l}{d\theta_l}, \quad \text{where } \frac{df_l}{df_{l-1}} \in \mathbb{R}^{n_l \times n_{l-1}}$$

• With forward-mode we multiply Jacobians from the right (Jacobian-vector products) • With reverse-mode we multiply Jacobians from the left (vector-Jacobian products)

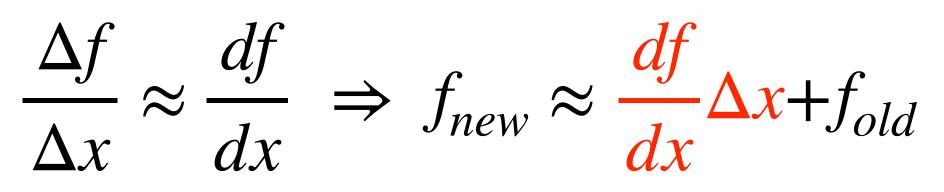
Differential equations in neural networks

Jacobian-Vector & Vector-Jacobian products

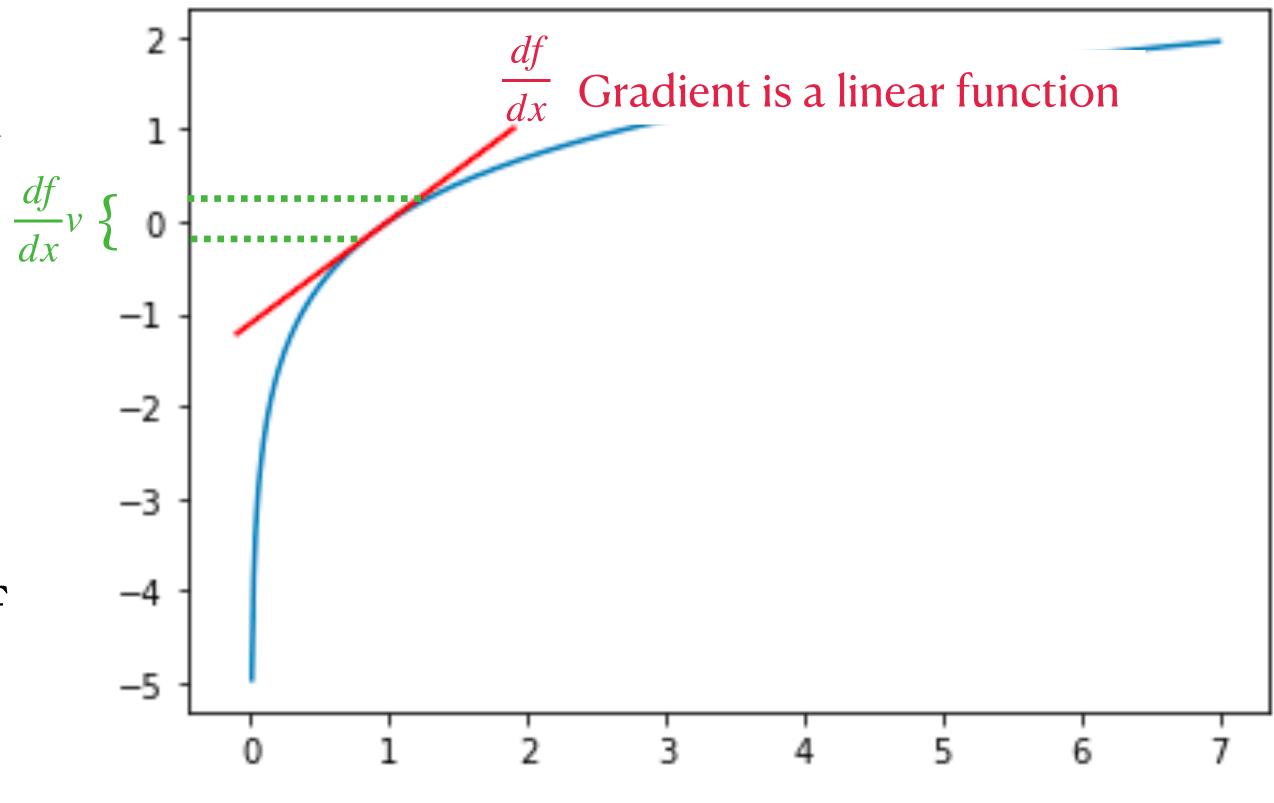
- Jacobians are everywhere in backdrop as they generalise gradients
- Often, in our auto-diff frameworks we must implement the Jacobian-vector (JVP) or vector-Jacobian (VJP) computations depending on whether the framework implements forward-mode or reverse-mode auto-differentiation
- Equivalent, but have different conceptual and computational characteristics

Jacobian-Vector & Vector-Jacobian products

- JVPs right-multiply: $\partial f(x)v, v \in \mathbb{R}^{n \times 1}$
- VJP left-multiply: $w^T \partial f(x), w \in \mathbb{R}^{m \times 1}$
- JVP/VJP capture 'total change' in function output when perturbed



• By linear approximation (Jacobian) of how much function changes locally

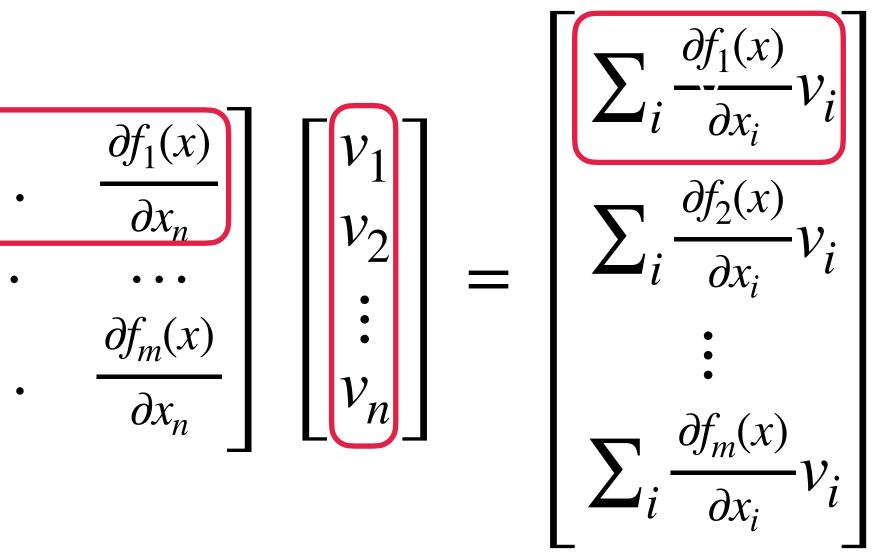


Differential equations in neural networks

Jacobian-Vector products (JVP)

- With JVP we multiply from the right: we "weight-average" partial derivatives $\partial f_i / \partial x_i$ across all input dimensions to see how the *j*-th output dimension is affected
- In other words "how much each output dimension change for a small nudge to input"?

	$\partial f_1(x)$	$\partial f_1(x)$	
	∂x_1	∂x_2	• •
$\partial f(x)v =$	• • •	• • •	• •
	$\partial f_m(x)$	$\partial f_m(x)$	
	∂x_1	∂x_2	• •



Differential equations in neural networks

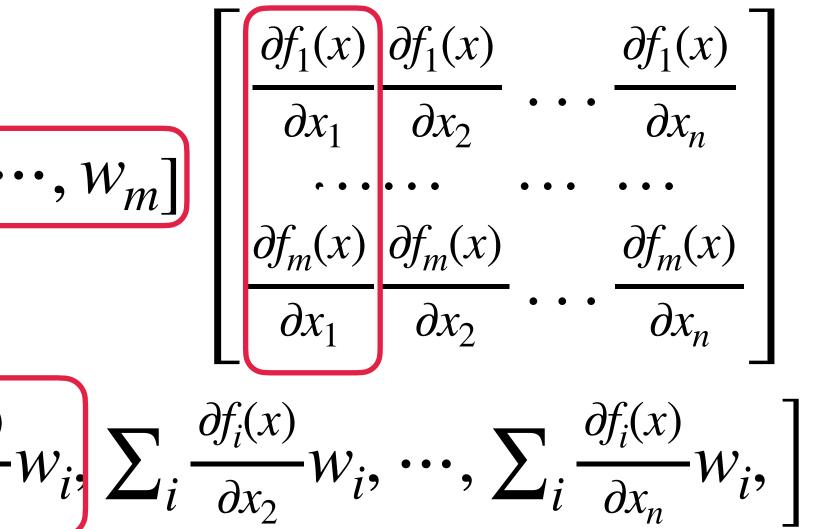
Vector-Jacobian products (VJP)

$$w^T \partial f(x) = [w_1, w_2, \cdots$$

$$= \left[\sum_{i} \frac{\partial f_i(x)}{\partial x_1} v \right]$$

Differential equations in neural networks

• With VJP we multiply from the left: it quantifies how much the specific *i*-th input dimension affected all outputs by "weight-averaging" across all output dimensions



Interpreting VJPs

• Assume we want to find out how much our loss gradient ($\Delta \ell$) is affected by an output perturbation Δy $\Delta \ell = \frac{\mathrm{d}\ell'}{\mathrm{d}y} \Delta y = l^{\mathsf{T}} \Delta y$ $\Delta \mathscr{C} = l^{\mathsf{T}} \Delta y = l^{\mathsf{T}} \frac{\partial f}{\partial x} \ \Delta x = \lambda^{\mathsf{T}} \Delta x$

- which itself is the result of perturbing the input by Δx , that is $\Delta y = \frac{\partial f}{\partial x} \Delta x$
- For a linear function l representing how the loss changes ($\Delta \ell$) w.r.t. nudges to its direct input Δy

Differential equations in neural networks

VJP

• VJP represents a corresponding linear function λ causing same change w.r.t. nudges to indirect input Δx

Computations in JVP & VJP

- JVPs correspond to forward-mode auto-differentiation
- VJP correspond to reverse-mode auto-differentiation
- Since the loss function is scalar (m = 1) and inputs n often in millions, VJP makes more compact computations compared to JVP
 - $\frac{\partial \ell}{\partial y} \cdot \frac{\partial y}{\partial z}$ $\frac{\partial z}{\partial x}$ 100×100,000 10×100 1×10
- VJP is more popular in auto-diff libraries

Differential equations in neural networks

JVPs & VJPs on our fixed points

Fixed-point JVP

- Reminder: the gradient of our fixed point $\partial_x z^\star(x) = \left[I - I\right]$
- How does the fixed-point gradient change with nudging on the right
 - $\partial_x z^\star(x) v = \left[I \right]$

$$-\partial_{z^{\star}}f(x,z^{\star}(x))\bigg]^{-1}\partial_{x}f(x,z^{\star})$$

$$-\partial_{z^{\star}}f(x,z^{\star}(x))\bigg]^{-1}\partial_{x}f(x,z^{\star})v$$

Differential equations in neural networks

Fixed-point JVP

• We first compute the JVP: $\partial_x z^*(x)v =$

- For the rest, even if the inverse is too hard $w = \left[I - \partial_{z^*} f(x, z^*(x))\right]^{-1} u \Rightarrow$ $w = u + \partial_{z^*} f(x, z^*(x)) w = \partial_x z^*(x) v$
- We find how fixed-point changes, $\partial_x z^*(x)v$, by another fixed-point problem

Differential equations in neural networks

$$\begin{bmatrix} I - \partial_{z^{\star}} f(x, z^{\star}(x)) \end{bmatrix}^{-1} \underbrace{\partial_{x} f(x, z^{\star}) v}_{u}$$

ard to compute, we can do:
$$\begin{bmatrix} I - \partial_{z^{\star}} f(x, z^{\star}(x)) \end{bmatrix} w = u \Rightarrow$$

(x)vf(x)v, by another fixed-point problem

Fixed point VJP

• Similarly, we can nudge from the left: *l*

• For
$$u^T = l^T \Big[I - \partial_{z^*} f(x, z^*(x)) \Big]^{-1}$$
 we have
 $u^T = l^T + u^T \partial_{z^*} f(x, z^*(x))$

- So, we first compute another fixed point *u* with a fixed-point solver
- Then, the change to our fixed point is another VJP, $u^T \partial_x f(x, z^*)$

$$T_{\partial_x z^{\star}(x)} = l^T \Big[I - \partial_{z^{\star}} f(x, z^{\star}(x)) \Big]^{-1} \partial_x f(x, z^{\star})$$

Differential equations in neural networks

Pros and cons of implicit differentiation

- General auto-diff works, but it is memory expensive, often computationally expensive, and numerically unstable
- For implicit differentiation we just need the final fixed-point for the backpropagation, which we can get with any fixed-point solver
- We do not care for all the intermediate solution points of the fixed-point solver
- Intuitively, implicit differentiation follows the logic "1. linearise around the fixed point, 2. then solve the linear system"
- The "2. then solve the linear system" can be done again with another fixed-point solver but we are free to choose