Jacobian-Vector & Vector-
Jacobian products

- An Intermezzo -




For a scalar-valued function f : [

Vf:R" - R"defined in location x = (x;, ..

Jacobians generalise gradients for multi-dimensional functions — : [

Recap on gradients
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[t shows how much the function output changes for small perturbations in the
respective input dimension

The gradient is a linear function as every partial derivative is linear
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Recap on backdrop

For a function f : R" — R comprising a cascade of modules f = ¢ o f; o --- o f,(x, 0)

Backpropagation (aka auto-differentiation) is implements the chain rule

Forward-mode backprop (right to left), reverse-mode backprop (left to right)
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With forward-mode we multiply Jacobians from the right (Jacobian-vector products)

With reverse-mode we multiply Jacobians from the left (vector-Jacobian products)
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Jacobian-Vector & Vector-Jacobian products

 Jacobians are everywhere in backdrop as they generalise gradients

* Often, in our auto-diff frameworks we must implement the Jacobian-vector (JVP) or
vector-Jacobian (VJP) computations depending on whether the framework
implements forward-mode or reverse-mode auto-differentiation

* Equivalent, but have different conceptual and computational characteristics
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Jacobian-Vector & Vector-Jacobian products

. . 1
JVPs right-multiply: 9f(x)v, v € R"™ .

df ——
7. Gradientis a linear function

VIP left-multiply: w'of(x).w € R™! 3

JVP/VJP capture ‘total change’ in
function output when perturbed

Af df df

— R — = ~ — Ax+

Ax dx fnew dx -][0161 -3 -
By linear approximation (Jacobian) of ™
how much function changes locally -5 1
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Jacobian-Vector products (JVP)

» With JVP we mutliply from the right: we “weight-average” partial derivatives df;/0x;

across all input dimensions to see how the j-th output dimension is affected

* In other words “how much each output dimension change for a small nudge to input”?
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Vector-Jacobian products (VIP)

* With VJP we multiply from the left: it quantifies how much the specific i-th input
dimension affected all outputs by “weight-averaging” across all output dimensions
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Interpreting VIPS

* Assume we want to find out how much our loss gradient (A7) is affected by an output perturbation Ay

de'! .
A =— Ay=1["Ay
dy
which itself is the result of perturbing the input by Ax, thatis Ay = ™ Ax
X
0
A =1"Ay = lT—f Ax = A1 Ax
_ox
VIJP

* For a linear function / representing how the loss changes (A7) w.r.t. nudges to its direct input Ay

* VJP represents a corresponding linear function /4 causing same change w.r.t. nudges to indirect input Ax
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Computationsin JVP & VJP

JVPs correspond to forward-mode auto-differentiation

VJP correspond to reverse-mode auto-differentiation

Since the loss function is scalar (m = 1) and inputs n often in millions, VJP makes
more compact computations compared to JVP
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VJP is more popular in auto-diff libraries
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JVPs & VJPs on our fixed points



Fixed-point JVP

* Reminder: the gradient of our fixed point

-1
0.2 (0) = 1= 0. f0, ()| 0,f0x,2*)

* How does the fixed-point gradient change with nudging on the right

-1
9 7*(x) = [1— 0.. f(x,z*(x))] d_f(x, )
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Fixed-point JVP

~1
We first compute the JVP: axz*(x)v = [I — 0+ f(x, Z*(x))] d.f(x, z*)w

u

* For the rest, even if the inverse is too hard to compute, we can do:
~1
w = [I—0_.flx, z*(x))] U= l[ — 0, f(x, z*(x))]w =u=>

W =u+ 0,.flx,2*(x))w = 0,27 (x)v

» We find how fixed-point changes, 0 _z*(x)v, by another fixed-point problem
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Fixed point VIP

-1
Similarly, we can nudge from the left: / Tﬁxz*(x) = | T[I — 0+ f(x, Z*(x))] 0 f(x,z%)

~1
For y! = 1] — 0. flx, Z*(X))] we have

"=1"+u'0,. flx, 77 (%))
So, we first compute another fixed point u with a fixed-point solver

Then, the change to our fixed point is another VJP, uT&x fx,z2%)
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Pros and cons of implicit differentiation

General auto-diff works, but it is memory expensive, often computationally
expensive, and numerically unstable

For implicit differentiation we just need the final fixed-point for the back-
propagation, which we can get with any fixed-point solver

We do not care for all the intermediate solution points of the fixed-point solver

Intuitively, implicit differentiation follows the logic “1. linearise around the fixed
point, 2. then solve the linear system”

The “2. then solve the linear system” can be done again with another fixed-point
solver but we are free to choose
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