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Recap on gradients

• For a scalar-valued function  the gradient is another function 
 defined in location , 


• Jacobians generalise gradients for multi-dimensional functions 


• It shows how much the function output changes for small perturbations in the 
respective input dimension


• The gradient is a linear function as every partial derivative is linear


f : ℝn → ℝ
∇f : ℝn → ℝn x = (x1, . . . , xn) ∇f(x) = [∂f/∂x1, . . . , ∂f/∂xn]T

∂f
∂x

: ℝn → ℝm

∂
∂xi

f(x) = lim
ϵ→0

f(x1, . . . , xi + ϵ/2,...,xn) − f(x1, . . . , xi − ϵ/2,...,xn)
ϵ

http://uvadl2c.github.io


E. Gavves Differential equations in neural networks http://uvadl2c.github.io 

Recap on backdrop

• For a function  comprising a cascade of modules 


• Backpropagation (aka auto-differentiation) is implements the chain rule 

,      where 


• Forward-mode backprop (right to left), reverse-mode backprop (left to right)


• With forward-mode we multiply Jacobians from the right (Jacobian-vector products)


• With reverse-mode we multiply Jacobians from the left (vector-Jacobian products)

f : ℝn → ℝ f = ℓ ∘ fL ∘ ⋯ ∘ f1(x, θ)

dℓ
dθl

=
dℓ
dfL

⋅
dfL

dfL−1
⋅ ⋯ ⋅

dfl
dθl

dfl
dfl−1

∈ ℝnl×nl−1
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Jacobian-Vector & Vector-Jacobian products 

• Jacobians are everywhere in backdrop as they generalise gradients


• Often, in our auto-diff frameworks we must implement the Jacobian-vector (JVP) or 
vector-Jacobian (VJP) computations depending on whether the framework 
implements forward-mode or reverse-mode auto-differentiation


• Equivalent, but have different conceptual and computational characteristics
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Jacobian-Vector & Vector-Jacobian products 

• JVPs right-multiply: 


• VJP left-multiply:   


• JVP/VJP capture ‘total change’ in 
function output when perturbed





• By linear approximation (Jacobian) of 
how much function changes locally

∂f(x)v, v ∈ ℝn×1

wT∂f(x), w ∈ ℝm×1

Δf
Δx

≈
df
dx

⇒ fnew ≈
df
dx

Δx+fold

df
dx

df
dx

v

Gradient is a linear function

{

http://uvadl2c.github.io


E. Gavves Differential equations in neural networks http://uvadl2c.github.io 

• With JVP we mutliply from the right: we “weight-average” partial derivatives  
across all input dimensions to see how the -th output dimension is affected


• In other words “how much each output dimension change for a small nudge to input”?


∂fj /∂xi

j

∂f(x)v =

∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn… … … …

∂fm(x)
∂x1

∂fm(x)
∂x2

. . .
∂fm(x)

∂xn

v1
v2
⋮
vn

=

∑i
∂f1(x)

∂xi
vi

∑i
∂f2(x)

∂xi
vi

⋮

∑i
∂fm(x)

∂xi
vi

Jacobian-Vector products (JVP)

v

v

v
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Vector-Jacobian products (VJP)

• With VJP we multiply from the left: it quantifies how much the specific -th input 
dimension affected all outputs by “weight-averaging” across all output dimensions


i

wT∂f(x) = [w1, w2, ⋯, wm]

∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn…… … …

∂fm(x)
∂x1

∂fm(x)
∂x2

. . .
∂fm(x)

∂xn

= [∑i
∂fi(x)
∂x1

wi, ∑i
∂fi(x)
∂x2

wi, ⋯, ∑i
∂fi(x)
∂xn

wi, ]

vv

v
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Interpreting VJPs

• Assume we want to find out how much our loss gradient ( ) is affected by an output perturbation 





which itself is the result of perturbing the input by , that is 


 


• For a linear function  representing how the loss changes ( ) w.r.t. nudges to its direct input 


• VJP represents a corresponding linear function  causing same change w.r.t. nudges to indirect input 

Δℓ Δy

Δℓ =
dℓ
dy

⊤
Δy = l⊤Δy

Δx Δy =
∂f
∂x

Δx

Δℓ = l⊤Δy = lT ∂f
∂x

⏟
VJP

Δx = λTΔx

l Δℓ Δy

λ Δx
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Computations in JVP & VJP

• JVPs correspond to forward-mode auto-differentiation


• VJP correspond to reverse-mode auto-differentiation


• Since the loss function is scalar ( ) and inputs  often in millions, VJP makes 
more compact computations compared to JVP





• VJP is more popular in auto-diff libraries

m = 1 n

∂ℓ
∂y⏟

1×10

⋅
∂y
∂z⏟

10×100

⋅
∂z
∂x⏟

100×100,000
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Fixed-point JVP

• Reminder: the gradient of our fixed point





• How does the fixed-point gradient change with nudging on the right


∂xz⋆(x) = [I − ∂z⋆ f(x, z⋆(x))]
−1

∂x f(x, z⋆)

∂xz⋆(x)v = [I − ∂z⋆ f(x, z⋆(x))]
−1

∂x f(x, z⋆)v
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Fixed-point JVP

• We first compute the JVP: 


• For the rest, even if the inverse is too hard to compute, we can do:


 


• We find how fixed-point changes, , by another fixed-point problem

∂xz⋆(x)v = [I − ∂z⋆ f(x, z⋆(x))]
−1

∂x f(x, z⋆)v

u

w = [I − ∂z⋆ f(x, z⋆(x))]
−1

u ⇒ [I − ∂z⋆ f(x, z⋆(x))]w = u ⇒

w = u + ∂z⋆ f(x, z⋆(x))w = ∂xz⋆(x)v
∂xz⋆(x)v
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Fixed point VJP

• Similarly, we can nudge from the left: 


• For  we have





• So, we first compute another fixed point  with a fixed-point solver


• Then, the change to our fixed point is another VJP, 

lT∂xz⋆(x) = lT[I − ∂z⋆ f(x, z⋆(x))]
−1

∂x f(x, z⋆)

uT = lT[I − ∂z⋆ f(x, z⋆(x))]
−1

uT = lT + uT∂z⋆ f(x, z⋆(x))

u

uT∂x f(x, z⋆)
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Pros and cons of implicit differentiation

• General auto-diff works, but it is memory expensive, often computationally 
expensive, and numerically unstable


• For implicit differentiation we just need the final fixed-point for the back-
propagation, which we can get with any fixed-point solver


• We do not care for all the intermediate solution points of the fixed-point solver


• Intuitively, implicit differentiation follows the logic “1. linearise around the fixed 
point, 2. then solve the linear system”


• The “2. then solve the linear system” can be done again with another fixed-point 
solver but we are free to choose
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