
Jacobian-Vector & Vector-
Jacobian products

- An intermezzo -

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Recap on gradients

• For a scalar-valued function the gradient is another function
 defined in location ,

• Jacobians generalise gradients for multi-dimensional functions

• It shows how much the function output changes for small perturbations in the
respective input dimension

• The gradient is a linear function as every partial derivative is linear

f : ℝn → ℝ
∇f : ℝn → ℝn x = (x1, . . . , xn) ∇f(x) = [∂f/∂x1, . . . , ∂f/∂xn]T

∂f
∂x

: ℝn → ℝm

∂
∂xi

f(x) = lim
ϵ→0

f(x1, . . . , xi + ϵ/2,...,xn) − f(x1, . . . , xi − ϵ/2,...,xn)
ϵ

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Recap on backdrop

• For a function comprising a cascade of modules

• Backpropagation (aka auto-differentiation) is implements the chain rule

, where

• Forward-mode backprop (right to left), reverse-mode backprop (left to right)

• With forward-mode we multiply Jacobians from the right (Jacobian-vector products)

• With reverse-mode we multiply Jacobians from the left (vector-Jacobian products)

f : ℝn → ℝ f = ℓ ∘ fL ∘ ⋯ ∘ f1(x, θ)

dℓ
dθl

=
dℓ
dfL

⋅
dfL

dfL−1
⋅ ⋯ ⋅

dfl
dθl

dfl
dfl−1

∈ ℝnl×nl−1

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Jacobian-Vector & Vector-Jacobian products

• Jacobians are everywhere in backdrop as they generalise gradients

• Often, in our auto-diff frameworks we must implement the Jacobian-vector (JVP) or
vector-Jacobian (VJP) computations depending on whether the framework
implements forward-mode or reverse-mode auto-differentiation

• Equivalent, but have different conceptual and computational characteristics

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Jacobian-Vector & Vector-Jacobian products

• JVPs right-multiply:

• VJP left-multiply:

• JVP/VJP capture ‘total change’ in
function output when perturbed

• By linear approximation (Jacobian) of
how much function changes locally

∂f(x)v, v ∈ ℝn×1

wT∂f(x), w ∈ ℝm×1

Δf
Δx

≈
df
dx

⇒ fnew ≈
df
dx

Δx+fold

df
dx

df
dx

v

Gradient is a linear function

{

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

• With JVP we mutliply from the right: we “weight-average” partial derivatives
across all input dimensions to see how the -th output dimension is affected

• In other words “how much each output dimension change for a small nudge to input”?

∂fj /∂xi

j

∂f(x)v =

∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn… … … …

∂fm(x)
∂x1

∂fm(x)
∂x2

. . .
∂fm(x)

∂xn

v1
v2
⋮
vn

=

∑i
∂f1(x)

∂xi
vi

∑i
∂f2(x)

∂xi
vi

⋮

∑i
∂fm(x)

∂xi
vi

Jacobian-Vector products (JVP)

v

v

v

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Vector-Jacobian products (VJP)

• With VJP we multiply from the left: it quantifies how much the specific -th input
dimension affected all outputs by “weight-averaging” across all output dimensions

i

wT∂f(x) = [w1, w2, ⋯, wm]

∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn…… … …

∂fm(x)
∂x1

∂fm(x)
∂x2

. . .
∂fm(x)

∂xn

= [∑i
∂fi(x)
∂x1

wi, ∑i
∂fi(x)
∂x2

wi, ⋯, ∑i
∂fi(x)
∂xn

wi,]

vv

v

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Interpreting VJPs

• Assume we want to find out how much our loss gradient () is affected by an output perturbation

which itself is the result of perturbing the input by , that is

• For a linear function representing how the loss changes () w.r.t. nudges to its direct input

• VJP represents a corresponding linear function causing same change w.r.t. nudges to indirect input

Δℓ Δy

Δℓ =
dℓ
dy

⊤
Δy = l⊤Δy

Δx Δy =
∂f
∂x

Δx

Δℓ = l⊤Δy = lT ∂f
∂x

⏟
VJP

Δx = λTΔx

l Δℓ Δy

λ Δx

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Computations in JVP & VJP

• JVPs correspond to forward-mode auto-differentiation

• VJP correspond to reverse-mode auto-differentiation

• Since the loss function is scalar () and inputs often in millions, VJP makes
more compact computations compared to JVP

• VJP is more popular in auto-diff libraries

m = 1 n

∂ℓ
∂y⏟

1×10

⋅
∂y
∂z⏟

10×100

⋅
∂z
∂x⏟

100×100,000

http://uvadl2c.github.io

JVPs & VJPs on our fixed points

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Fixed-point JVP

• Reminder: the gradient of our fixed point

• How does the fixed-point gradient change with nudging on the right

∂xz⋆(x) = [I − ∂z⋆ f(x, z⋆(x))]
−1

∂x f(x, z⋆)

∂xz⋆(x)v = [I − ∂z⋆ f(x, z⋆(x))]
−1

∂x f(x, z⋆)v

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Fixed-point JVP

• We first compute the JVP:

• For the rest, even if the inverse is too hard to compute, we can do:

• We find how fixed-point changes, , by another fixed-point problem

∂xz⋆(x)v = [I − ∂z⋆ f(x, z⋆(x))]
−1

∂x f(x, z⋆)v

u

w = [I − ∂z⋆ f(x, z⋆(x))]
−1

u ⇒ [I − ∂z⋆ f(x, z⋆(x))]w = u ⇒

w = u + ∂z⋆ f(x, z⋆(x))w = ∂xz⋆(x)v
∂xz⋆(x)v

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Fixed point VJP

• Similarly, we can nudge from the left:

• For we have

• So, we first compute another fixed point with a fixed-point solver

• Then, the change to our fixed point is another VJP,

lT∂xz⋆(x) = lT[I − ∂z⋆ f(x, z⋆(x))]
−1

∂x f(x, z⋆)

uT = lT[I − ∂z⋆ f(x, z⋆(x))]
−1

uT = lT + uT∂z⋆ f(x, z⋆(x))

u

uT∂x f(x, z⋆)

http://uvadl2c.github.io

E. Gavves Differential equations in neural networks http://uvadl2c.github.io

Pros and cons of implicit differentiation

• General auto-diff works, but it is memory expensive, often computationally
expensive, and numerically unstable

• For implicit differentiation we just need the final fixed-point for the back-
propagation, which we can get with any fixed-point solver

• We do not care for all the intermediate solution points of the fixed-point solver

• Intuitively, implicit differentiation follows the logic “1. linearise around the fixed
point, 2. then solve the linear system”

• The “2. then solve the linear system” can be done again with another fixed-point
solver but we are free to choose

http://uvadl2c.github.io

