Differentiation of ODE-based
functions




ODE-defined functions

* Instead of a fixed-value system, a layer can be
modelled implicitly by an ordinary differential

n

— |

equation with functionf: R X |

n

an initial value y, € |

y(1) = f(t, y(1))
y(0) =y,

* We can use any ODE solver to solve y(¢) for

future values of 7, for instance Euler
Integration, or Runge-Kutta
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Example

» Say we have the ODE (Lorentz system)
o(y — x)

X(p—=2) =Yy
xy — fpz

* Forward propagating, we can have
various trajectories
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Differentiating through an ODE

* We can differentiate via all steps in the sequence, but we would have the same
problems with memory and instability as with fixed-point layers

* Instead, we can follow a similar route with the implicit function theorem
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JVP for ODE-based layers

* For the model: 0,y(¢, a, b) = f(¢, y(¢, a, b), a) with initial conditions: y(0,a, b) = 0
* We are interested in how much the solution to the ODE function will change if we

nudge parameters a, b

* We first need to compute the derivative with respect to parameters a
6a(6ty(t, a. b)) — 0, (f(t, (i, a.b), a)) = 0,f(t, . a) + 0,f(t,y,a)d,)(t,a, b) =
0, 9, y(t,a,b) =9, f(t,y,a) + d,f(t,y,a)d, ¥t a,b)

Z(t,;l,b)
0, z(t,a,b) = 0, f(t,y,a) + d,f(t,y,a)z(t, a, b)
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JVP for ODE-based layers

* That is, to compute how much a nudge in the parameters affects the gradient we
must solve another ODE

at y(t,d,b) . f(t,y(t,a,b),a)
[Ot (1. a, b)] ~ 0./t y,a) + 0 f(t,y, a)z(t, a, b)

With initial conditions
y(0,a, b) _| b
z(0,a, b) Ab
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JVP on our example

* Let’s say we want to see how the
Lorentz trajectory will change when we

nudge the third dimension of the output g %
f‘“““\\‘,' —.__.-“' - ~
o(y — x) 1 \/‘ >,
3ty(t,x,y,z)= X(,O—Z)—y r ..",
xy — Bz
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JVP on our example

* Or if we nudge the parameter o

o(y — X) A== 5
aty(l‘, X, y’ Z) — )C(p — Z) — y .............. ——-—___.—-" ’,’ : gg

Xy — pz S i
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* Orf

aty(ta X, ya Z) —

o(y — Xx)

x(p—2) —

xXy—pz

Y
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JVP on our example
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